《计算机应用研究》|Application Research of Computers

基于生成模型约束的graph cuts标签融合算法

Generating model constraints graph cuts label fusion algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 张令顺,马瑜,芦玥,王文娜,申旺发
机构 宁夏大学 a.物理与电子电气工程学院;b.学生处,银川 750021
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)06-064-1910-06
DOI 10.19734/j.issn.1001-3695.2018.12.0955
摘要 人脑磁共振图像(magnetic resonance imaging,MRI)分割算法易受图谱错误标签的影响,为减少错误标签对标签融合准确度的影响,提高人脑磁共振图像的分割精度,在图谱预选阶段采用梯度信息和互信息筛选出相似性较大的图谱图像,对标签融合阶段提出利用生成模型(generative model,GM)约束的graph cuts标签融合方法,快速准确地分割出了人脑海马体结构。与其他的标签融合方法对比,提出的算法具有更高的分割精度。
关键词 图谱筛选; 标签融合; graph cuts; 海马体分割
基金项目 宁夏自然科学基金资助项目(NZ16009)
宁夏高等学校科学研究项目(NGY2016015)
2018年宁夏研究生教育教学改革研究与实践项目(YJG201811)
宁夏大学研究生创新研究项目(GIP2018071)
本文URL http://www.arocmag.com/article/01-2020-06-064.html
英文标题 Generating model constraints graph cuts label fusion algorithm
作者英文名 Zhang Lingshun, Ma Yu, Lu Yue, Wang Wenna, Shen Wangfa
机构英文名 a.School of Physics & Electronic-Electrical Engineering,b.Student Affairs Office,Ningxia University,Yinchuan 750021,China
英文摘要 The segmentation algorithm of brain magnetic resonance image is easily affected by error label. In order to reduce the influence of the error label to label fusion method, and improve the brain MR image segmentation accuracy, this paper proposed an atlases selecting method based on the gradient information and mutual information in the pre-selection stage. And proposed the method of GM constraints graph cuts in the label fusion stage, to rapidly and accurately segment the hippocampus. Compared with the others label fusion method, the proposed method has higher segmentation accuracy.
英文关键词 atlases selection; label fusion; graph cuts; hippocampus segmentation
参考文献 查看稿件参考文献
 
收稿日期 2018/12/24
修回日期 2019/3/11
页码 1910-1915
中图分类号 TP391.41
文献标志码 A