《计算机应用研究》|Application Research of Computers

基于改进人工蜂群算法与MapReduce的大数据聚类算法

Clustering algorithm of big data based on improved artificial bee colony algorithm and MapReduce

免费全文下载 (已被下载 次)  
获取PDF全文
作者 孙倩,陈昊,李超
机构 湖北大学 a.信息化建设与管理处;b.计算机与信息工程学院,武汉 430062
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2020)06-021-1707-04
DOI 10.19734/j.issn.1001-3695.2018.11.0865
摘要 针对大数据聚类算法计算效率与聚类性能较低的问题,提出了一种基于改进人工蜂群算法与MapReduce的大数据聚类算法。将灰狼优化算法与人工蜂群算法结合,同时提高人工蜂群算法的搜索能力与开发能力,该策略能够有效地提高聚类处理的性能;采用混沌映射与反向学习作为ABC种群的初始化策略,提高搜索的解质量;将聚类算法基于Hadoop的MapReduce编程模型实现,通过最小化类内距离的平方和实现对大数据的聚类处理。实验结果表明,该算法有效地提高了大数据集的聚类质量,同时加快了聚类速度。
关键词 数据分析; 聚类算法; 人工蜂群算法; 灰狼优化算法; 云计算; 分布式计算
基金项目 湖北省教育厅科学技术研究重点项目(D20141005)
本文URL http://www.arocmag.com/article/01-2020-06-021.html
英文标题 Clustering algorithm of big data based on improved artificial bee colony algorithm and MapReduce
作者英文名 Sun Qian, Chen Hao, Li Chao
机构英文名 a.Informationization Management Department,b.School of Computer Science & Information Engineering,Hubei University,Wuhan 430062,China
英文摘要 Aiming at the problems of low computational efficiency and low clustering performance of clustering algorithms for big data, this paper proposed a clustering algorithm of big data based on the improved ABC algorithm and MapReduce. This algorithm combined the grey wolf optimizer algorithm and ABC algorithm, and improved the exploration and exploitation of the ABC algorithm simultaneously, it could help to improve the clustering performance effectively. The algorithm utilized the chaotic map and backward learning as the initial strategy of ABC colony to improve the solution quality of search procedure. It realized the clustering algorithm based on MapReduce programming model, and realized the clustering process for big data by minimizing the quadratic sum of inner class distances. Experimental results demonstrate that the proposed algorithm improves the clustering quality of big data, and speedups the clustering procedure.
英文关键词 data analysis; clustering algorithm; artificial bee colony algorithm(ABC); grey wolf optimizer algorithm(GWO); cloud computing; distributed computing
参考文献 查看稿件参考文献
 
收稿日期 2018/11/12
修回日期 2019/1/4
页码 1707-1710,1764
中图分类号 TP301.6
文献标志码 A