《计算机应用研究》|Application Research of Computers

自组织多目标粒子群优化算法

Self-organizing multi-objective particle swarm optimization algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 梁静,郭倩倩,岳彩通,瞿博阳
机构 1.郑州大学 电气工程学院,郑州 450001;2.中原工学院 电子信息学院,郑州 450007
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)08-015-2311-06
DOI 10.19734/j.issn.1001-3695.2018.01.0070
摘要 针对多目标粒子群优化算法收敛性和多样性难以平衡的问题,提出一种利用问题的结构信息来解决多目标问题的自组织多目标粒子群算法。通过自组织映射网络发现种群和非支配解集分布的结构,构造出当前粒子的邻域关系,从邻域中选出非支配解,从而引导种群局部和全局的搜索。提出了精英学习策略,通过对精英粒子进行变异,引导算法跳出局部最优。实验结果表明,所提算法可以兼顾收敛性和多样性,有效地解决多目标优化问题。
关键词 多目标粒子群优化; 自组织映射; 种群分布; 精英学习策略
基金项目 国家自然科学基金资助项目(61473266,61673404)
河南省高校优秀青年教师研究奖励基金资助项目(2014GGJS-004)
河南省大学创新人才科技计划资助项目(16HASTIT041)
本文URL http://www.arocmag.com/article/01-2019-08-015.html
英文标题 Self-organizing multi-objective particle swarm optimization algorithm
作者英文名 Liang Jing, Guo Qianqian, Yue Caitong, Qu Boyang
机构英文名 1.School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China;2.School of Electric & Information Engineering,Zhongyuan University of Technology,Zhengzhou 450007,China
英文摘要 In order to keep the balance between convergence and diversity of multi-objective particle swarm optimization algorithm, this paper proposed a self-organizing multi-objective particle swarm optimization algorithm(SMPSO), which utilized structure of population to solve multi-objective optimization problems. The distribution of the population and non-dominated solutions founded by self-organizing map network helped to construct the particle neighborhood relations, so as to improve the algorithm's local and global search ability by selecting non-dominated solution as leader in the neighborhood. The elite learning strategy could help population jump out local optimum by doing mutation on elite particles. The experimental results show its ability to keep convergence and diversity, and show its effectiveness to solve the multi-objective optimization problems.
英文关键词 multi-objective particle swarm optimization; self-organizing map; population distribution; elite learning strategy
参考文献 查看稿件参考文献
 
收稿日期 2018/1/24
修回日期 2018/4/2
页码 2311-2316,2348
中图分类号 TP183
文献标志码 A