《计算机应用研究》|Application Research of Computers

基于Canopy聚类的噪声自适应模糊C-均值算法

Improved fuzzy C-means clustering algorithm based on Canopy clustering

免费全文下载 (已被下载 次)  
获取PDF全文
作者 陈凯,陈秀宏,孙慧强
机构 江南大学 数字媒体学院,江苏 无锡 214122
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)07-059-2200-05
DOI 10.19734/j.issn.1001-3695.2018.01.0116
摘要 针对局部空间信息的模糊C-均值算法中空间影响因子容易受到噪声影响出现错误标志的问题,提出一种融合局部和非局部空间信息的模糊C-均值聚类图像分割算法(NLWFLICM)。在WFLICM算法的模糊影响因子中引入非局部空间信息,根据噪声程度自适应地设置局部和非局部信息权重,并重新标记中心点的模糊影响因子。实验结果表明,NLWFLICM算法具有比WFLICM算法更强的鲁棒性和自适应性,并在一定程度上提高了WFLICM算法对含有大量噪声图像进行分割的鲁棒性,同时保留了图像的纹理。为了提高算法的聚类性能和收敛速度,结合Canopy算法能够快速对数据进行粗聚类的优点,提出基于Canopy聚类与非局部空间信息的FCM图像分割改进算法(Canopy-NLWFLICM),可以在NLWFLICM算法聚类前对聚类中心进行预处理,从而提高收敛速度和图像分割精度。
关键词 聚类算法; Canopy算法; 模糊C-均值算法; 局部和非局部空间信息
基金项目 国家自然科学基金资助项目(61373055)
2017年江苏省研究生科研创新计划项目(KYCX17_1500)
本文URL http://www.arocmag.com/article/01-2019-07-059.html
英文标题 Improved fuzzy C-means clustering algorithm based on Canopy clustering
作者英文名 Chen Kai, Chen Xiuhong, Sun Huiqiang
机构英文名 School of Digital Media,Jiangnan University,Wuxi Jiangsu 214122,China
英文摘要 Aiming at the problem that the spatial influence factors are easily misidentified by noise in the fuzzy C-means algorithm for local spatial information(WFLICM), this paper proposed a fuzzy C-means clustering algorithm for image segmentation based on local and non-local spatial information(NLWFLICM). It introduced the non-local spatial information into the fuzzy influencing factor of WFLICM algorithm, and adaptively set the weight of local and non-local information according to the noise level, and re-marked the fuzzy influence factors of the central point. The experimental results show that the NLWFLICM algorithm is more robust and adaptive than the WFLICM algorithm, and improves the robustness of the WFLICM algorithm to a large extent, while preserving the image texture. In order to improve the clustering performance and convergence speed of the algorithm, combined with the advantages of Canopy algorithm for fast clustering of data, this paper proposed an improved algorithm for FCM image segmentation based on Canopy clustering and non-local spatial information(Canopy-NLWFLICM) before clustering algorithm. It can improve the convergence speed and image segmentation accuracy.
英文关键词 clustering algorithm; Canopy algorithm; fuzzy C-means algorithm; local and non-local spatial information
参考文献 查看稿件参考文献
 
收稿日期 2018/1/23
修回日期 2018/3/16
页码 2200-2204,2218
中图分类号 TP301.6
文献标志码 A