《计算机应用研究》|Application Research of Computers

基于改进的经验模态方法脑电信号分解

EEG signals decomposition based on improved ensemble empirical mode decomposition method

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王成龙,韦巍,李天永
机构 广西大学 a.计算机与电子信息学院;b.广西多媒体通信与网络技术重点实验室;c.广西高校多媒体通信与信息处理重点实验室,南宁 530004
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)07-023-2020-03
DOI 10.19734/j.issn.1001-3695.2018.01.0036
摘要 针对经验模态分解(empirical mode decomposition,EMD)过程中存在的包络拟合问题,提出了一种消减欠冲现象的改进算法。该算法通过引入伪极值点增加了极值点的数目,构成了新的极值序列;然后利用新的极值序列插值拟合得到新的包络线;最后通过仿真实验对比所提算法和经典拟合算法包络拟合产生的欠冲点数目。实验结果显示,与经典拟合算法相比,改进的算法产生的欠冲点数目减少了大约77.5%。实验结果表明,此算法可以有效地消减欠冲点的数目,拟合出的包络线更加贴近原始信号,拥有更好的平滑性。
关键词 经验模态分解; 欠冲现象; 脑电信号; 包络线拟合
基金项目
本文URL http://www.arocmag.com/article/01-2019-07-023.html
英文标题 EEG signals decomposition based on improved ensemble empirical mode decomposition method
作者英文名 Wang Chenglong, Wei Wei, Li Tianyong
机构英文名 a.School of Computer,Electronics & Information,b.Guangxi Key Laboratory of Multimedia Communications & Network Technology,c.Guangxi Colleges & Universities Key Laboratory of Multimedia Communications & Information Processing,Guangxi University,Nanning 530004,China
英文摘要 Due to the envelope fitting problem exists in the process of empirical mode decomposition, this paper proposed an improved algorithm which could eliminate the undershoot phenomenon exactly. By introducing pseudo-extreme points, this algorithm increased the number of extreme points and formed new extreme value sequence. Then it got new envelope by using the new extreme value sequence interpolation. The envelope fitted by this method was closer to the original signal and had better smoothness. Finally, a contrast result between cubic spline interpolation and this algorithm show that the number of undershoots decreases by about 77.5%, which proves that this algorithm can effectively reduce the number of undershoot points. In addition, fitting the envelope can tightly wrap the original signal and have a better envelope.
英文关键词 empirical mode decomposition(EMD); undershoot phenomenon; EEG; envelope fitting
参考文献 查看稿件参考文献
 
收稿日期 2018/1/20
修回日期 2018/3/7
页码 2020-2022
中图分类号 TN911.7
文献标志码 A