《计算机应用研究》|Application Research of Computers

基于改进贝叶斯优化算法的CNN超参数优化方法

Hyper-parameter optimization of CNN based on improved Bayesian optimization algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 邓帅
机构 北京工业大学 a.北京未来网络科技高精尖创新中心;b.北京市物联网软件与系统工程技术研究中心,北京 100124
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)07-014-1984-04
DOI 10.19734/j.issn.1001-3695.2018.01.0021
摘要 CNN框架中,如何对其模型的超参数进行自动化获取一直是一个重要问题。提出一种基于改进的贝叶斯优化算法的CNN超参数优化方法。该方法使用改进的汤普森采样方法作为采集函数,利用改进的马尔可夫链蒙特卡罗算法加速训练高斯代理模型。该方法可以在超参数空间不同的CNN框架下进行超参数优化。利用CIFAR-10、MRBI和SVHN测试集对算法进行性能测试,实验结果表明,改进后的CNN超参数优化算法比同类超参数优化算法具有更好的性能。
关键词 贝叶斯优化; 卷积神经网络; 高斯过程; 超参数优化
基金项目 北京市自然科学基金资助项目(4122010)
国家自然科学基金资助项目(60773186)
本文URL http://www.arocmag.com/article/01-2019-07-014.html
英文标题 Hyper-parameter optimization of CNN based on improved Bayesian optimization algorithm
作者英文名 Deng Shuai
机构英文名 a.Beijing Advanced Innovation Center for Future Internet Technology,b.Beijing Engineering Research Center for IoT Software & Systems,Beijing University of Technology,Beijing 100124,China
英文摘要 In the framework of convolutional neural network(CNN), how to obtain the hyper-parameters of its model automatically is an important and pressing research topic. This paper proposed a hyper-parameter optimization method of CNN based on improved Bayesian optimization algorithm. This method used the improved Thompson sampling method as the acquisition function. It used the improved Markov chain Monte Carlo algorithm to accelerate the Gaussian surrogate model. The proposed method can be used to optimize hyper-parameters in frameworks of CNN with different hyper-parameter space. It tested the performance of the algorithm by using these testing sets: CIFAR-10, MRBI and SVHN. The experimental results show that the improved hyper-parameter optimization algorithm of CNN has better performance than the other algorithms.
英文关键词 Bayesian optimization; convolutional neural network; Gaussian process; hyper-parameter optimization
参考文献 查看稿件参考文献
 
收稿日期 2018/1/10
修回日期 2018/3/6
页码 1984-1987
中图分类号 TP181
文献标志码 A