《计算机应用研究》|Application Research of Computers

基于变异交叉方程与进化选择机制的回溯优化改进算法

Backtracking search optimization algorithm based on mutation and crossing equations and evolutionary selection mechanism

免费全文下载 (已被下载 次)  
获取PDF全文
作者 赵琳敬,葛宝臻,陈雷
机构 1.天津大学 a.精密仪器与光电子工程学院;b.光电信息技术教育部重点实验室,天津 300072;2.天津商业大学 信息工程学院,天津 300134
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)07-013-1980-04
DOI 10.19734/j.issn.1001-3695.2017.12.0848
摘要 针对回溯搜索优化算法存在的收敛速度慢、容易陷入局部最优等问题,提出了一种改进算法。利用<i>t</i>分布产生变异尺度系数,加快了算法收敛速度;完善交叉方程结构,引入最优个体控制种群搜索方向,有效提高了算法开发能力;最后提出进化选择机制,引入差分进化算法变异因子,一定概率下以较差解替换较优解,避免算法陷入局部最优。在数值实验中,选取了15个测试函数进行仿真测试,并与五种表现良好的算法进行了比较,结果表明,该算法在收敛速度及搜索精度方面有明显优势。
关键词 回溯搜索优化算法; 变异方程; 交叉方程; 差分进化
基金项目 国家自然科学基金重点资助项目(61535008)
本文URL http://www.arocmag.com/article/01-2019-07-013.html
英文标题 Backtracking search optimization algorithm based on mutation and crossing equations and evolutionary selection mechanism
作者英文名 Zhao Linjing, Ge Baozhen, Chen Lei
机构英文名 1.a.School of Precision Instruments & Opto-Electronics Engineering,b.Key Laboratory of Opto-Electronics Information & Technical Science for Ministry of Education,Tianjin University,Tianjin 300072,China;2.School of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China
英文摘要 According to the slow convergence and easiness to trap in local optimum of backtracking search optimization algorithm, this paper presented an improved algorithm. The method proposed a mutation scale factor based on <i>t</i> distribution firstly to speed up the convergence rate. Then the algorithm improved the structure of crossover equation and introduced the optimal individual to control the direction of population search, which effectively improved the development capability. Finally, the algorithm proposed the evolutionary selection mechanism, introduced the mutation factor of differential evolution algorithm and replaced the optimal solution with worse solution under a certain probability, which can avoid algorithm to fall into the local optimum. The numerical experiments selected 15 test functions for simulation and compared with 5 well-behaved algorithms. The results show that the proposed algorithm has obvious advantages in terms of convergence rate and search accuracy.
英文关键词 backtracking search optimization algorithm(BSA); mutation equation; crossing equation; differential evolution
参考文献 查看稿件参考文献
 
收稿日期 2017/12/8
修回日期 2018/2/26
页码 1980-1983
中图分类号 TP301.6
文献标志码 A