《计算机应用研究》|Application Research of Computers

基于广义分形插值理论的多尺度分类尺度下推算法

Scaling-down algorithm of multi-scale classification based on generalized fractal interpolation theory

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李佳星,赵书良,安磊,李长镜
机构 河北师范大学 a.数学与信息科学学院;b.河北省计算数学与应用重点实验室;c.移动物联网研究院,石家庄 050024
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)07-011-1970-05
DOI 10.19734/j.issn.1001-3695.2018.01.0031
摘要 多尺度数据挖掘多应用于空间遥感图像数据,以图像的分辨率或者区域分割为依据进行尺度划分,然后在每个尺度层进行分析。近期,有不少学者将多尺度数据挖掘应用于一般数据集上,以等级理论、概念分层以及包含度理论等为尺度划分依据,研究不同尺度层的分布规律,进而发现有意义的事实,如多尺度关联规则以及多尺度聚类。但是在一般数据集下很少将多尺度数据挖掘应用于分类算法领域。定义了广义分形插值理论的概念,打破了局限于迭代函数系统(iterative function systems,IFS)的缺憾,拓展了分形插值的应用;提出了基于广义分形插值理论的多尺度分类尺度下推算法(multi-scale classification scaling-down algorithm,MSCSDA)。仿真实验建立在四个UCI基准数据集和一个H省部分人口真实数据集上,并将MSCSDA与KNN、decision tree以及LIBSVM算法进行对比分析,实验结果表明,MSCSDA在不同的数据集上均优于其他算法。
关键词 多尺度数据挖掘; 分类; 分形插值; 尺度下推
基金项目 国家自然科学基金资助项目(71271067)
国家社科基金重大项目(13&ZD091)
河北省高等学校科学技术研究项目(QN2014196)
河北师范大学硕士基金资助项目(xj2015003)
本文URL http://www.arocmag.com/article/01-2019-07-011.html
英文标题 Scaling-down algorithm of multi-scale classification based on generalized fractal interpolation theory
作者英文名 Li Jiaxing, Zhao Shuliang, An Lei, Li Changjing
机构英文名 a.College of Mathematics & Information Science,b.Hebei Key Laboratory of Computational Mathematics & Applications,c.Institute of Mobile Internet of Things,Hebei Normal University,Shijiazhuang 050024,China
英文摘要 The research of multi-scale data mining mainly applies to space remote sensing image data sets, and conducts scale division based on the resolution or regional segmentation of the images, then analysis knowledge on each scale layer. Recently, there are quite a few learners apply the multi-scale data mining to general data sets, and conduct scale division based on the level theory, concept hierarchy and inclusion degree etc., study the distribution rule on different scale layers, and then found significant facts, for example, multi-scale association rules, multi-scale clustering. But it has not been involved in the field of the classification mining. This paper defined the concept of generalized fractal interpolation theory, broke the situation that limited to the use of the IFS, and extended the application of the fractal interpolation. Then, it proposed a multi-scale classification scaling-down algorithm based on the generalized fractal interpolation theory named MSCSDA. This paper performed experiments on four UCI benchmark data sets, and one real data set(H province part of the population). Then it analyzed the experimental results compare MSCSDA with KNN, decision tree and LIBSVM algorithms on different data sets. The experimental results show that the MSCSDA gives better results in terms of classification than the others.
英文关键词 multi-scale data mining; classification; fractal interpolation; scale-down
参考文献 查看稿件参考文献
 
收稿日期 2018/1/18
修回日期 2018/3/6
页码 1970-1974
中图分类号 TP391;TP301.6
文献标志码 A