《计算机应用研究》|Application Research of Computers

基于排列熵和支持向量机的癫痫发作预测研究

Epileptic seizure prediction research based on permutation entropy and support vector machine

免费全文下载 (已被下载 次)  
获取PDF全文
作者 周梦妮,崔会芳,曹锐,王彬,阎鹏飞,相洁
机构 太原理工大学 a.信息与计算机学院;b.软件学院,太原 030024
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)06-021-1696-04
DOI 10.19734/j.issn.1001-3695.2017.12.0816
摘要 针对癫痫发作给病人带来的巨大伤害,为临床治疗留下足够空余时间,提出一个可以预测癫痫发作的系统模型。对21名癫痫病人进行研究,提取具有较低算法复杂度的排列熵构成特征向量,将其输入支持向量机(support vector machine,SVM)训练出学习模型,用来识别发作期样本,利用投票机制充分考虑病人差异来判断所处状态,最终实现癫痫的实时预测。结果表明,其中81%的发作可以提前平均50多分钟预测到,且具有较低的误报率。为癫痫发作预测系统的理论研究打下坚实基础。
关键词 癫痫; 排列熵; 支持向量机; 预测
基金项目 国家自然科学基金资助项目(61503272,61305142,61373101,61741212)
山西省自然科学青年基金资助项目(2015021090,201601D202042)
博士后基金资助项目(2016M601287)
山西省回国留学人员科研资助项目(2016-037)
山西省重点研发计划资助项目(201603D111014)
本文URL http://www.arocmag.com/article/01-2019-06-021.html
英文标题 Epileptic seizure prediction research based on permutation entropy and support vector machine
作者英文名 Zhou Mengni, Cui Huifang, Cao Rui, Wang Bin, Yan Pengfei, Xiang Jie
机构英文名 a.College of Information & Computer,b.College of Software,Taiyuan University of Technology,Taiyuan 030024,China
英文摘要 Aiming at the great harm caused by epileptic seizures for patients and leave enough spare time for clinical treatment, the study put forword a system which can predict the seizure in advance for people with epileptic. This method based on 21 epileptic patients and extracted permutation entropy as a feature vector which has lower algorithm complexity. Then it input the vector into the support vector machine(SVM) to train a learning model and identify the ictal samples. Taking full account of patient differences, it used voting mechanism to determine the patient's state. Finally, the method realized a real-time prediction for epileptic. The results show that this method can predict 81% of the seizures with more than 50 minutes before the onset of epilepsy, and it has a low false alarm rate. The method provides a solid foundation for theoretical research of seizure prediction system.
英文关键词 epilepsy; permutation entropy; SVM; prediction
参考文献 查看稿件参考文献
 
收稿日期 2017/12/25
修回日期 2018/3/1
页码 1696-1699
中图分类号 TP301.6
文献标志码 A