《计算机应用研究》|Application Research of Computers

基于分布式图计算的学术论文推荐算法

Academic paper recommendation based on distributed graph

免费全文下载 (已被下载 次)  
获取PDF全文
作者 潘峰,怀丽波,崔荣一
机构 延边大学 工学院 计算机科学与技术学科智能信息处理研究室,吉林 延吉 133002
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)06-006-1629-04
DOI 10.19734/j.issn.1001-3695.2018.01.0003
摘要 针对海量论文数据导致的应用效率低下问题,提出一个基于层次混合模型的推荐算法WSVD++。该模型根据学术论文良好的结构特征,构建一个加权的论文二部图模型。首先对论文进行特征提取,按不同特征的权重构建论文的复合关系图;其次对关系图采用一种改进的PPR算法,计算每篇论文的重要程度,依此来对用户—论文关系进行加权;然后在构建好的加权二部图模型上混合SVD++图算法进行推荐。实验结果表明,改善了推荐算法学术论文的推荐效果,并且基于分布式图计算框架GraphX,扩展性好,适合大数据处理。
关键词 混合模型推荐; 协同过滤; SVD++; 分布式图计算; GraphX
基金项目 国家语委“十二五”科研规划2015年度科研项目(YB125-178)
本文URL http://www.arocmag.com/article/01-2019-06-006.html
英文标题 Academic paper recommendation based on distributed graph
作者英文名 Pan Feng, Huai Libo, Cui Rongyi
机构英文名 Intelligent Information Processing Laboratory,Dept. of Computer Science & Technology,Yanbian University,Yanji Jilin 133002,China
英文摘要 Aiming at the low efficiency caused by massive academic paper data, this paper proposed a recommendation algorithm method based on the hierarchical mixed model named WSVD++. According to the structural features of academic papers, the model constructed a weighted bipartite graph model. Firstly, this method extracted the features of each paper and constructed the composite relation graph according to the ratio of different features. Secondly, it used an improved PPR algorithm on the graph to calculate the importance weight of each paper, and then weighed the relation between the user and the paper. Finally, it recommend on the weighted bipartite graph by using SVD++ graph algorithm. The result shows that the proposed algorithm improves the recommended accuracy. The whole process implemented in distributed graph calculation system, that means the method has good expansibility and is suitable for big data processing.
英文关键词 hybrid model; collaborative filtering; SVD++; distributed graph computation; GraphX
参考文献 查看稿件参考文献
 
收稿日期 2018/1/3
修回日期 2018/2/22
页码 1629-1632,1642
中图分类号 TP301.6
文献标志码 A