《计算机应用研究》|Application Research of Computers

虚拟化与数字仿真融合的网络仿真任务划分

免费全文下载 (已被下载 次)  
获取PDF全文
作者 吴文燕,姜鑫,王晓锋,刘渊
机构 1.江南大学 a.物联网工程学院;b.数字媒体学院,江苏 无锡 214122;2.江南计算技术研究所,江苏 无锡 214083
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-046-0878-04
DOI 10.19734/j.issn.1001-3695.2017.09.0943
摘要 为提升网络仿真性能,面向虚拟化与数字仿真融合的网络仿真体系架构,研究相应的网络仿真任务划分方法。综合考虑虚拟化与数字仿真各自优势,将网络拓扑分为虚拟化拓扑区域与数字仿真拓扑区域,结合给定物理资源,以负载均衡与远程通信量最小化为目标,对两种区域进行融合划分。实验表明,通过该方法进行网络仿真任务划分相对于随机算法与均衡负载平衡算法,远程通信量平均降低了33.7%、25.1%,负载均衡度平均提升了56.3%、38.0%。该方法可有效降低远程通信量与提升负载均衡度。
关键词 虚拟化;数字仿真;融合仿真;任务划分;远程通信量;负载均衡度
基金项目 国家自然科学基金资助项目(61672264)
国家重点研发计划资助项目(2016YFB0800801)
本文URL http://www.arocmag.com/article/01-2019-03-046.html
英文标题
作者英文名 Wu Wenyan, Jiang Xin, Wang Xiaofeng, Liu Yuan
机构英文名 1.a.SchoolofInternetofThingsEngineering,b.SchoolofDigitalMedia,JiangnanUniversity,WuxiJiangsu214122,China;2.JiangnanInstituteofComputingTechnique,WuxiJiangsu214083,China
英文摘要 This paper researched on the task dividing method based on the architecture of the network emulation for the fusion of virtualization and digital simulation to improve the performance. This method took into account the advantages of virtualization and digital simulation, and divided the emulation network topology into virtualization topology area and digital simulation topology area. And then aiming at load balancing and remote traffic minimizing, it divided the two topology area combined with given physical resources. Extensive experiments show that using the proposed method to divide the network emulation task, it reduced the remote traffic by 33.7%, 25.1% averagely, and improved the degree of load balancing by 56.3%, 38.0% averagely, compare with the random algorithm and the uniform load balancing algorithm. The task dividing method can effectively reduce the remote traffic and improve the degree of load balancing.
英文关键词 virtualization; digital simulation; fusion emulation; task dividing; remote traffic; degree of load balancing
参考文献 查看稿件参考文献
  [1] Jin Dong, Zheng Yuhao, Nicol D M. A parallel network simulation and virtual time-based network emulation testbed[J] . Journal of Simulation, 2014, 8(3):206-214.
[2] 黄敏桓, 张尧学, 许飞, 等. 基于虚拟化技术的路由仿真实验平台设计[J] . 系统仿真学报, 2014, 26(8):1672-1677. (Huang Minhuan, Zhang Yaoxue, Xu Fei, et al. Design of virtualization platform for router emulation[J] . Journal of System Simulation, 2014, 26(8):1672-1677. )
[3] 黄锦松, 杨艺, 王文鼐. 一种基于虚拟化平台的网络仿真准实验床[J] . 计算机技术与发展, 2015, 25(8):208-212. (Huang Jinsong, Yang Yi, Wang Wennai. A para-testbed for network simulation based on virtualized platform[J] . Computer Technology and Development, 2015, 25(8):208-212. )
[4] 何新华, 金国柱, 王琼. 仿真实验中的虚拟化技术应用[J] . 兵器装备工程学报, 2011, 32(8):71-73. (He Xinhua, Jin Guozhu, Wang Qiong. Application of virtualization technology in simulation experiment[J] . Journal of Ordnance Equipment Engineering, 2011, 32(8):71-73. )
[5] Gu Yan, Fujimoto R. Applying parallel and distributed simulation to remote network emulation[C] //Proc of the 39th Conference on Winter Simulation. Piscataway, NJ:IEEE Press, 2007:1328-1336. [6] Xu Donghua, Ammar M. BencHMAP:benchmark-based, hardware and model-aware partitioning for parallel and distributed network simulation[C] //Proc of the 12th IEEE Computer Societys Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems. Washington DC:IEEE Computer Society, 2004:455-463.
[7] Willinger W, Taqqu M S, Sherman R, et al. Self-similarity through high-variability:statistical analysis of ethernet LAN traffic at the source level[J] . IEEE/ACM Trans on Networking, 1997, 5(1):71-86.
[8] Peschlow P, Honecker T, Martini P. A flexible dynamic partitioning algorithm for optimistic distributed simulation[C] //Proc of the 21st International Workshop on Principles of Advanced and Distributed Simulation. Washington, DC:IEEE Computer Society, 2007:219-228.
[9] De Grande R E, Boukerche A, Ramadan H. Distributed re-arrangement scheme for balancing computational load and minimizing communication delays in HLA-based simulations[J] . Concurrency & Computation Practice & Experience, 2013, 25(5):626-648.
[10] 王聪, 苑迎, 彭三城, 等. 基于拓扑预配置的公平虚拟网络映射算法[J] . 计算机研究与发展, 2017, 54(1):212-220. (Wang Cong, Yuan Ying, Peng Sancheng, et al. Fair virtual network embedding algorithm with topology pre-configuration[J] . Journal of Computer Research and Development, 2017, 54(1):212-220. )
[11] 王亮, 韩连钢, 谢锡海. 智能云测试下拓扑映射算法实现的研究[J] . 电子技术应用, 2017, 43(3):116-119. (Wang Liang, Han Liangang, Xie Xihai. Research on the implementation of topology mapping algorithm in intelligent cloud test[J] . Computer Technology and Its Applications, 2017, 43(3):116-119. )
[12] 彭利民. 拓扑一致性绿色虚拟网络映射算法[J] . 小型微型计算机系统, 2016, 37(5):1079-1083. (Peng Limin. Topology-aware green virtual network embedding algorithm[J] . Journal of Chinese Computer Systems, 2016, 37(5):1079-1083. )
[13] Kivity A, Lublin U, Liguori A, et al. KVM:the Linux virtual machine monitor[C] //Proc of Linux Symposium. 2007:225-230.
[14] Kumar S, Paul S, Amar A K. Communication in vehicular cloud network using ns-3[J] . International Journal of Control Theory & Applications, 2017, 10(13):159-167.
[15] Riley G F, Henderson T R. The ns-3 network simulator[M] //Wehrle K, Gyunes M, Gross J. Modeling & Tools for Network Simulation. Berlin:Springer-Verlag, 2010:15-34.
[16] Font J L, Iigo P, Domínguez M, et al. Analysis of source code metrics from ns-2 and ns-3 network simulators[J] . Simulation Modelling Practice & Theory, 2011, 19(5):1330-1346.
收稿日期 2017/9/3
修回日期 2017/10/16
页码 878-881,885
中图分类号 TP393.07
文献标志码 A