《计算机应用研究》|Application Research of Computers

大型停车场空闲车位短时预测方法*

Simulation of prediction for free parking spaces in large parking lots

免费全文下载 (已被下载 次)  
获取PDF全文
作者 佘飞,邱建东,汤旻安
机构 兰州交通大学 a.机电技术研究所;b.机电工程学院;c.新能源与动力工程学院,兰州 730070
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-041-0851-04
DOI 10.19734/j.issn.1001-3695.2017.09.0922
摘要 为了提升智能交通系统性能及停车场利用率,针对大型停车场空闲车位短时预测进行了研究,提出了一种基于灰色理论、BP神经网络和马尔可夫链的组合预测方法以提高预测精度与时效性。该方法使用灰色理论处理数据,弱化其随机性,再通过人工神经网络训练得到数量预测结果,最后使用马尔可夫链消除系统产生的随机误差得到最终结果。实验表明,这种组合预测方法有效提高了预测精度,预测结果符合实际停车场数据变化规律,为驾驶员提前作出合理的停车场选择提供了可靠依据,能有效提高停车场车位利用率。
关键词 空闲车位;灰色神经网络;预测;马尔可夫链
基金项目 国家自然科学基金资助项目(61663021)
甘肃省自然科学基金资助项目(1610RJZA048)
本文URL http://www.arocmag.com/article/01-2019-03-041.html
英文标题 Simulation of prediction for free parking spaces in large parking lots
作者英文名 She Fei, Qiu Jiandong, Tang Min’an
机构英文名 a.MechatronicT&RInstitute,b.SchoolofMechanicalEngineering,c.SchoolofNewEnergy&PowerEngineering,LanzhouJiaotongUniversity,Lanzhou730070,China
英文摘要 In order to improve the performance of intelligent transportation system and the utilization rate of parking lot, aiming at the short-term prediction of free parking space in large parking lot, this paper came up with a forecasting method based on the combination of grey theory, BP neural network and Markov chain.At beginning, it used the grey method to weaken randomness of data itself and combined with factors that influenced the quantity of free parking spots.Then it went through BP neural network training to get the short time free parking spots prediction.Finally, it used the Markov chain to eliminate the random error generated by the system and obtained the final result.According to the experiment results, the combined forecasting method can effectively improve the prediction accuracy.The result that matched the data flow of actual parking lot is able to provide reliable analysis for drivers to choose the right parking lot and improve efficiency of parking lots usage.
英文关键词 unoccupied parking space; grey neural network; prediction; Markov chain
参考文献 查看稿件参考文献
  [1] 杨晓芳, 付强, 牛兆雨. 基于停车诱导信息板的最优停车场推荐的双层目标模型[J] . 计算机应用研究, 2014, 31(10):3017-3019, 3040. (Yang Xiaofang, Fu Qiang, Niu Zhaoyu. Bi-level objective model of optimal parking lot recommendation based on parking guidance signs[J] . Application Research of Computers, 2014, 31(10):3017-3019, 3040. )
[2] 季彦婕, 陈晓实, 王炜, 等. 基于小波变换和粒子群小波神经网络组合模型的有效停车泊位短时预测[J] . 吉林大学学报:工学版, 2016, 46(2):399-405. (Ji Yanjie, Chen Xiaoshi, Wang Wei, et al. Short-term forecasting of parking swarm optimization-wavelet neural network model[J] . Journal of Jilin University:Engineering and Technology Edition, 2016, 46(2):399-405. )
[3] Ji Yanjie, Tang Dounan, Blythe P, et al. Short-term forecasting of available parking space using wavelet neural network model[J] . IET Intelligent Transport Systems, 2015, 9(2):202-209.
[4] 陈海鹏, 图晓航, 王玉, 等. 基于小波-ELM+神经网络的短期停车泊位预测[J] . 吉林大学学报:理学版, 2017, 55(2):388-392. (Chen Haipeng, Tu Xiaohang, Wang Yu, et al. Short-term parking space prediction based on wavelet-ELM neural networks[J] . Journal of Jilin University:Science Edition, 2017, 55(2):388-392. )
[5] 韩二锋. 基于马尔可夫预测模型的智能停车有效泊位预测研究[J] . 价值工程, 2016, 35(6):215-218. (Han Erfeng. Research on intelligent parking effective berth forecast based on Markov forecast model[J] . Value Engineering, 2016, 35(6):215-218. )
[6] 杨兆升, 陈晓冬. 智能化停车诱导系统有效停车泊位数据的预测技术研究[J] . 交通运输系统工程与信息, 2003, 3(4):12-15. (Yang Zhaosheng, Chen Xiaodong. Research on the estimation for effective parking space of the intelligentized parking guidance system[J] . Journal of Transportation Systems Engineering and Information Technology, 2003, 3(4):12-15. )
[7] 高广银, 丁勇, 姜枫, 等. 基于BP神经网络的停车诱导泊位预测[J] . 计算机系统应用, 2017, 26(1):236-239. (Gao Guangyin, Ding Yong, Jiang Feng, et al. Prediction of parking guidance space based on BP neural networks[J] . Computer Systems & Applications, 2017, 26(1):236-239. )
[8] 赵戊辰, 张玉茹. BP神经网络用于停车场空余泊位的预测研究[J] . 哈尔滨商业大学学报:自然科学版, 2015, 31(1):10220-10265. (Zhao Wuchen, Zhang Yuru. Application research of parking lot free parking number prediction based on back propagation neural network[J] . Journal of Harbin University of Commerce:Natural Science Edition, 2015, 31(1):10220-10265. )
[9] Felix C, Carola B. Prediction of space availability in real-time[J] . Expert Systems with Applications, 2012, 39(8):7281-7290.
[10] Klappenecker A, Lee H, Welch J L. Finding available parking spaces made easy[J] . Ad hoc Networks, 2014, 12(1):243-249.
[11] Rajabioun T, Foster B, Ioannou P. Intelligent parking assist[C] //Proc of the 21st Mediterranean Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2013:1156-1161.
[12] Liu Shixu, Guan Hongzhi, Yan Hai, et al. Unoccupied parking space prediction of chaotic time series[C] //Proc of the 10th International Conference of Chinese Transportation Professionals. 2010:2122-2131.
[13] 何启, 戴波. 基于灰色神经网络—加权马尔可夫链的大坝变形监控模型及预报研究[J] . 中国农村水利水电, 2016(10):146-150, 155. (He Qi, Dai Bo. Dam deformation monitoring model based on gray neural network-weighted Markov chain and prediction research[J] . China Rural Water and Hydropower, 2016(10):146-150, 155. )
[14] 韩婷婷, 吴世跃, 王鹏军. 基于马尔可夫残差修正的瓦斯浓度预测[J] . 工矿自动化, 2014, 40(3):28-31. (Han Tingting, Wu Shiyue, Wang Pengjun. Prediction of gas concetration based on residual correction of Markov chain[J] . Industry and Mine Automation, 2014, 40(3):28-31. )
[15] 冯天梅, 张鑫. 基于修正组合模型的包头市用水量预测分析[J] . 西北农林科技大学学报:自然科学版, 2014, 42(3):226-234. (Feng Tianmei, Zhang Xin. Prediction of water consumption in Baotou based on amended combination model[J] . Journal of Northwest A&F University:Natural Science Edition, 2014, 42(3):226-234. )
收稿日期 2017/9/21
修回日期 2017/10/27
页码 851-854
中图分类号 TP391.9
文献标志码 A