《计算机应用研究》|Application Research of Computers

一种高效基于模式图的数据库关键字查询方法

Efficient relational database keyword search method based on schema graph

免费全文下载 (已被下载 次)  
获取PDF全文
作者 费云峰,丁国辉,滕一平,李景,孙莎莎
机构 沈阳航空航天大学 计算机学院,沈阳 110136
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-039-0838-06
DOI 10.19734/j.issn.1001-3695.2018.02.0130
摘要 针对基于模式图的数据库关键字查询方法中普遍存在的查询效率较低的问题,提出了合并网络查询方法(CCNE)。该方法设计了一种合并网络结构,可以有效地避免传统方法中因候选网络之间的重复结构造成的冗余操作;同时,给出一种改进的候选网络生成策略,可以避免产生冗余候选网络并缩小遍历范围,从而提高效率;最后在合并网络的基础上,设计一种合并网络执行算法,在很大程度上减少了传统方法所需执行的大量复杂数据库查询操作,进一步提高了查询效率。多组基于真实数据集的实验结果表明,CCNE可以在保证查询结果无缺失的情况下有效提高查询效率。
关键词 关系数据库;关键字查询;信息检索;模式图
基金项目 国家自然科学基金资助项目(61303016)
本文URL http://www.arocmag.com/article/01-2019-03-039.html
英文标题 Efficient relational database keyword search method based on schema graph
作者英文名 Fei Yunfeng, Ding Guohui, Teng Yiping, Li Jing, Sun Shasha
机构英文名 SchoolofComputer,ShenyangAerospaceUniversity,Shenyang110136,China
英文摘要 In order to solve the problem of inefficient query in relational database keyword search scheme based on schema graph, this paper proposed combined candidate network evaluation(CCNE) method.This method designed a new combined candidate network(CCN)structure, which could effectively avoid the redundant operation caused by the repeated structure between candidate networks(CN) in the traditional method.At the same time, it proposed an improved CN generation strategy to improve the efficiency by avoiding generating redundant CN and narrowing the traversal range.Finally, based on CCN, this paper designed a CCN evaluation algorithm, which greatly reduced the complex database query operations required by traditional methods and further improved the query efficiency.Experiment based on real data sets show that CCNE method can improve query efficiency without any loss of query results.
英文关键词 relational database; keyword query; information retrieval; schema graph
参考文献 查看稿件参考文献
  [1] Dalvi B B, Kshirsagar M, Sudarshan S. Keyword search on external memory data graphs[J] . Proceedings of the VLDB Endowment, 2008, 1(1):1189-1204.
[2] Golenberg K, Kimelfeld B, Sagiv Y. Keyword proximity search in complex data graphs[C] // Proc of ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2008:927-940.
[3] Lin Ziyu, Li Yuqian, Lai Yongxuan. Improve the effectiveness of keyword search over relational database by node-temperature-based ant colony optimization[C] //Proc of the 12th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE Press, 2015:1209-1214.
[4] Coffman J, Weaver A C. A framework for evaluating database keyword search strategies[C] //Proc of ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2010:729-738.
[5] Blunschi L, Jossen C, Kossmann D, et al. SODA:generating SQL for business users[J] . Proceedings of the VLDB Endowment, 2012, 5(10):932-943.
[6] Kuchmann-Beauger N, Brauer F. Question answering framework for structured query languages:US, US8996555B2[P] . 2015.
[7] Markowetz A, Yang Yin, Papadias D. Keyword search on relational data streams[C] //Proc of ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2007:605-616.
[8] Coffman J, Weaver A C. An empirical performance evaluation of relational keyword search techniques[J] . IEEE Trans on Knowledge & Data Engineering, 2014, 26(1):30-42.
[9] Baid A, Rae I, Li Jiexing, et al. Toward scalable keyword search over relational data[J] . Proceedings of the VLDB Endowment, 2013, 3(1):140-149.
[10] 崔婉秋, 李昕, 孟祥福, 等. 关系数据库关键字查询方法研究[J] . 小型微型计算机系统, 2016, 37(12):2702-2707. (Cui Wanqiu, Li Xin, Meng Xiangfu, et al. Keyword search in relational databases:a research[J] . Journal of Chinese Mini-Micro Computer Systems, 2016, 37(12):2702-2707).
[11] Hristidis V, Papakonstantinou Y. DISCOVER:keyword search in relational databases[C] //Proc of the 28th International Conference on Very Large Data Bases. 2002:670-681.
[12] Hristidis V, Gravano L, Papakonstantinou Y. Efficient IR-style keyword search over relational databases[C] //Proc of the 29th International Conference on Very Large Data Bases. 2003:850-861.
[13] De Oliveira P, Da Silva A, De Moura E. Ranking candidate networks of relations to improve keyword search over relational databases[C] //Proc of the 31st IEEE International Conference on Data Engineering. Piscataway, NJ:IEEE Press, 2015:399-410.
[14] Kuchmann-Beauger N, Brauer F, Aufaure M A. QUASL:a framework for question answering and its application to business intelligence[C] //Proc of the 7th IEEE International Conference on Research Challenges in Information Science. Piscataway, NJ:IEEE Press, 2013:1-12.
[15] 文继军, 王珊. SEEKER:基于关键词的关系数据库信息检索[J] . 软件学报, 2005, 16(7):1270-1281. (Wen Jijun, Wang Shan. SEEKER:keyword-based information retrieval over relational databases[J] . Journal of Software, 2005, 16(7):1270-1281. )
收稿日期 2018/2/7
修回日期 2018/4/12
页码 838-843,860
中图分类号 TP311.132
文献标志码 A