《计算机应用研究》|Application Research of Computers

温室移动机器人复合栅格地图构建方法研究

Research on construction of composite grid map for mobile robot in greenhouse

免费全文下载 (已被下载 次)  
获取PDF全文
作者 史兵,段锁林,李菊,王朋,朱益飞
机构 常州大学 a.城市轨道交通学院;b.机器人研究所,江苏 常州 213164
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-036-0824-05
DOI 10.19734/j.issn.1001-3695.2017.09.0963
摘要 针对温室环境中机器人依靠自身携带的传感器无法获取全面的环境信息,从而常导致路径规划错误的问题,提出了一种结合外部传感器系统获取温室环境信息,构建复合栅格地图的方法。利用无线传感器网络定时采集对机器人通过性有影响的温度、湿度环境信息,并发送给机器人;当温度或湿度数据的变化率达到设定阈值时,机器人利用阈值分割和插值法分别建立温度和湿度栅格地图;将温度栅格地图、湿度栅格地图与室内障碍物栅格地图相结合,构建动态更新的复合栅格地图。经测试,采用常规A*算法规划路径时,基于环境数据变化率阈值设定为±10%的复合栅格地图的成功率和完成时间,分别是基于普通栅格地图成功率的2.5倍和1.05倍。结果表明,复合栅格地图能提高路径规划的成功率,并且不会由于动态更新复合栅格地图,导致机器人响应时间明显增加,实时性能满足系统的实际需求。
关键词 温室;移动机器人;栅格地图;阈值分割;无线传感器网络
基金项目 国家自然科学基金资助项目(51405039)
江苏省科技支撑计划资助项目(BE2013671)
江苏省高校优秀中青年教师和校长海外研修计划项目
本文URL http://www.arocmag.com/article/01-2019-03-036.html
英文标题 Research on construction of composite grid map for mobile robot in greenhouse
作者英文名 Shi Bing, Duan Suolin, Li Ju, Wang Peng, Zhu Yifei
机构英文名 a.SchoolofUrbanRailTransit,b.InstituteofRobotics,ChangzhouUniversity,ChangzhouJiangsu213164,China
英文摘要 A mobile robot based on a normal grid map could not obtain the comprehensive environmental information in a greenhouse because of the less number and limited location of carried sensors.An incorrect planning path may arise.The system adopted a way to build a composite grid map based on the comprehensive environmental information in greenhouse.Firstly, wireless sensor network regularly collected data of temperature and humidity and sent them to the robot.These data had heavy impacts on mobile robot’s passing through in greenhouse.Secondly, when the rate of change of temperature or humidity data reached the threshold, the system used the method of threshold segmentation and interpolation to establish the grid maps for temperature and humidity respectively.Finally, the system combined the grid map for temperature, the grid map for humidity and the grid map for interior material barrier in a greenhouse to build a dynamically updated composite grid map.After testing, when the system adopted the A* algorithm, the rate of success to avoid area of high temperature and high humidity based on the composite grid map at threshold of ±10% was 2.5 times to normal grid map.The time of completion was 1.05 times to normal grid map.The results show that the composite grid map can improve the success rate of the path planning and the robot does not meet the problem of slow response of the robot due to the dynamic updating of the composite grid map.The real-time performance satisfies the actual requirements of the system.
英文关键词 greenhouse; mobile robot; grid map; threshold segmentation; wireless sensor network
参考文献 查看稿件参考文献
  [1] 谭民, 王硕. 机器人技术研究进展[J] . 自动化学报, 2013, 39(7):963-972. (Tan Min, Wang Shuo. Research progress on robotics[J] . Acta Automatica Sinica, 2013, 39(7):963-972. )
[2] 胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J] . 农业工程学报, 2015, 31(10):1-10. (Hu Jingtao, Gao Lei, Bai Xiaoping, et al. Review of research on automatic guidance of agricultural vehicles[J] . Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10):1-10. )
[3] 高国琴, 李明. 基于K-means算法的温室移动机器人导航路径识别[J] . 农业工程学报, 2014, 30(7):25-33. (Gao Guoqin, Li Ming. Navigating path recognition for greenhouse mobile robot based on K-means algorithm[J] . Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7):25-33. )
[4] 王新忠, 韩旭, 毛罕平, 等. 基于最小二乘法的温室番茄垄间视觉导航路径检测[J] . 农业机械报, 2012, 43(6):161-166. (Wang Xinzhong, Han Xu, Mao Hanping, et al. Navigation line detection of tomato ridges in greenhouse based on least square method[J] . Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6):161-166. )
[5] 贾士伟, 李军民, 邱权, 等. 基于激光测距仪的温室机器人道路边缘检测与路径导航[J] . 农业工程学报, 2015, 31(13):39-45. (Jia Shiwei, Li Junmin, Qiu Quan, et al. New corridor edge detection and navigation for greenhouse mobile robots based on laser scanner[J] . Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13):39-45. )
[6] 曹鹏飞, 赵振. 无线传感器网络关键技术研究综述[J] . 微计算机信息, 2012, 28(9):389-391, 406. (Cao Pengfei, Zhao Zhen. Research of key technologies in wireless sensor network[J] . Control & Automation, 2012, 28(9):389-391, 406. )
[7] Harun A, Ndzi D, Ramli M F, et al. Signal propagation in aquaculture environment for wireless sensor network applications[J] . Progress in Electromagnetics Research-Pier, 2012, 131(4):477-494.
[8] Tuna G, Gungor V C, Gulez K. An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters[J] . Ad hoc Network, 2014, 13(2):54-68.
[9] Li Xu, Lille I, Falcon R, et al. Servicing wireless sensor networks by mobile robots[J] . IEEE Communication Magazine, 2012, 50(7):147-154.
[10] Lee W Y, Hur K, Hwang K I, et al. Mobile robot navigation using wireless sensor networks without localization procedure[J] . Wireless Personal Communication, 2012, 62(2):257-275.
[11] 张文, 刘勇, 张超凡, 等. 基于方向A*算法的温室机器人实时路径规划[J] . 农业机械学报, 2017, 48(7):22-28. (Zhang Wen, Liu Yong, Zhang Chaofan, et al. Real-time path planning of greenhouse robot based on directional A* algorithm[J] . Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7):22-28. )
[12] 王红卫, 马勇, 谢勇, 等. 基于平滑 A*算法的移动机器人路径规划[J] . 同济大学学报:自然科学版, 2010, 38(11):1647-1650, 1655. (Wang Hongwei, Ma Yong, Xie Yong, et al. Mobile robot optimal path planning based on smoothing A* algorithm[J] . Journal of Tongji University:Natural Science Edition, 2010, 38(11):1647-1650, 1655. )
[13] 马飞, 杨皞屾, 顾青, 等. 基于改进 A*算法的地下无人铲运机导航路径规划[J] . 农业机械学报, 2015, 46(7):303-309. (Ma Fei, Yang Haoshen, Gu Qing, et al. Navigation path planning of unmanned underground LHD based on improved A*algorithm[J] . Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7):303-309. )
[14] 简毅, 张月. 移动机器人全局覆盖路径规划算法研究进展与展望[J] . 计算机应用, 2014, 23(10):2844-2849. (Jian Yi, Zhang Yue. Complete coverage path planning algorithm for mobile robot:progress and prospect[J] . Journal of Computer Applications, 2014, 23(10):2844-2849. )
[15] Vakilian K A, Massah J. A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops[J] . Computer Electronic Agriculture, 2017, 139(12):153-163.
[16] 李逃昌, 胡静涛, 高雷. 基于级联式控制策略的农业机械鲁棒自适应路径跟踪控制[J] . 机器人, 2014, 36(2):241-249. (Li Taochang, Hu Jingtao, Gao Lei. Robust adaptive path tracking control of agricultural machines based on cascaded control strategy[J] . Robot, 2014, 36(2):241-249. )
[17] 李进燕, 朱征宇, 刘琳, 等. 基于行程时间多步预测的实时路径导航算法[J] . 计算机应用研究, 2013, 30(2):346-349, 353. (Li Jinyan, Zhu Zhengyu, Liu Lin, et al. Real-time navigation algorithm based on multi-step travel time prediction[J] . Application Research of Computers, 2013, 30(2):346-349, 353. )
[18] 赵德安, 贾伟宽, 张云, 等. 农业机器人自主导航改进自适应滤波控制器研究[J] . 农业机械学报, 2015, 46(5):1-6. (Zhao Dean, Jia Weikuan, Zhang Yun, et al. Design of agricultural robot autonomous navigation control based on improved self-adaptive filter[J] . Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5):1-6. )
收稿日期 2017/9/8
修回日期 2017/10/24
页码 824-828
中图分类号 TP242.6
文献标志码 A