《计算机应用研究》|Application Research of Computers

基于稀疏表示的脑电(EEG)情感分类

Classifying emotional EEG using sparse representation method

免费全文下载 (已被下载 次)  
获取PDF全文
作者 邓欣,高峰星,米建勋,李丹妮,王进,唐云
机构 重庆邮电大学 a.计算机科学与技术学院;b.数据工程与可视计算重点实验室,重庆 400065
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-032-0801-06
DOI 10.19734/j.issn.1001-3695.2017.11.0992
摘要 计算机对人类情绪与情感的识别研究已经成为了脑机接口领域的研究热点。通过分析人类在生活中的各种情感状态,提取脑电信号的特征并对情感状态进行识别、分类是情感智能化领域的重要方向。针对基于音乐视频诱导的情感数据集DEAP进行了研究,提取脑电信号的频域特征后,提出了采用加速近邻梯度(APG)算法和正交匹配(OMP)算法求解稀疏编码的稀疏表示分类模型进行情感分类,并与支持向量机(SVM)算法进行效果比较。实验结果表明,APG算法通过l1范数正则近似求解以其快速的收敛速度在情感数据集上有着较好的分类表现,而OMP算法与SVM算法的分类效果相差无几,实现了情感脑电信号的分类。
关键词 脑电信号;稀疏表示;情感;加速近邻算法;正交匹配算法
基金项目 国家自然科学基金资助项目(61403054)
重庆市基础与前沿研究计划项目(cstc2014jcyjA40001,cstc2014jcyjA40022)
重庆教委科学技术研究项目(自然科学类)(KJ1400436)
本文URL http://www.arocmag.com/article/01-2019-03-032.html
英文标题 Classifying emotional EEG using sparse representation method
作者英文名 Deng Xin, Gao Fengxing, Mi Jianxun, Li Danni, Wang Jin, Tang Yun
机构英文名 a.SchoolofComputerScience&Technology,b.KeyLaboratoryofDataEngineering&VisualComputing,ChongqingUniversityofPosts&Telecommunications,Chongqing400065,China
英文摘要 Computer recognition of human emotion has become a hot topic in the field of brain computer interface(BCI) in recently years.By analyzing the various emotional states in people’s life, extracting the features of EEG and classifying emotional states is an important direction in the field of emotional intelligence.Based on the emotion data set induced by the music video, this research extracted the frequency-domain features of EEG.After that, the accelerated proximal gradient(APG) and orthogonal matching pursuit(OMP) algorithms for the sparse representation method were adopted to classify the EEG signals.By comparing with other algorithms, the experimental results show that the APG with l1 norm performs well in the emotion data set with fast convergence speed, and the greedy idea based OMP algorithm can achieve the same effect with other algorithms.The comparative analysis show the effectiveness and feasibility of the proposed method for emotional EEG signals classification.
英文关键词 EEG; sparse representation; emotion; APG; OMP
参考文献 查看稿件参考文献
  [1] Karthick N G, Ahamed V I T, Paul J K. Music and the EEG:a study using nonlinear methods[C] //Proc of IEEE International Conference on Biomedical and Pharmaceutical Engineering. Piscataway, NJ:IEEE Press, 2006:424-427.
[2] Nie Dan, Wang Xiaowei, Shi Lichen, et al. EEG-based emotion recognition during watching movies[C] //Proc of International IEEE/EMBS Conference on Neural Engineering. Piscataway, NJ:IEEE Press, 2011:667-670.
[3] Sander K, Christian M, Mohammad S, et al. DEAP:a database for emotion analysis using physiological signals[J] . IEEE Trans on Affective Computing, 2011, 3(1):18-31.
[4] Russell J A. A circumplex model of affect[J] . Journal of Personality and Social Psychology, 1980, 39(6):1161-1178.
[5] Davidson R J, Jackson D C, Kalin N H. Emotion, plasticity, context, and regulation[J] . Psychological Bulletin, 2000, 126(6):890-909.
[6] Petrantonakis P C, Hadjileontiadis L J. Emotion recognition from EEG using higher order crossings[J] . IEEE Trans on Information Technology in Biomedicine, 2010, 14(2):186-197.
[7] Runyon R P, Coleman K A, Pittenger D J. Fundamentals of behavioral statistics[J] . Stomatologie Der Ddr, 1996, 36(12):733.
[8] 李孔震, 王炳和, 娄昊, 等. 基于小波变换和二维非负矩阵分解的人脸识别算法[J] . 计算机应用研究, 2013, 30(4):1275-1277, 1280. (Li Kongzhen, Wang Binghe, Lou Hao, et al. Face recognition algorithm based on wavelet transform and two-dimensional non-negative matrix decomposition[J] . Application Research of Computers, 2013, 30(4):1275-1277, 1280. )
[9] Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J] . Nature, 1996, 381(6583):607-609.
[10] Tsaig Y, Donoho D L. Extensions of compressed sensing[J] . Signal Processing, 2006, 86(3):549-571.
[11] 刘继承, 陈佳伟. 基于改进StOMP算法图像压缩感知重构[J] . 计算机应用研究, 2016, 33(9):2869-2872, 2877. (Liu Jicheng, Chen Jiawei. Image compression sensing reconstruction based on improved StOMP algorithm[J] . Application Research of Computers, 2016, 33(9):2869-2872, 2877. )
[12] Yin Jun, Liu Zhonghua, Jin Zhong, et al. Kernel sparse representation based classification[J] . Neurocomputing, 2012, 77(1):120-128.
[13] Mallat S G, Zhang Zhifeng. Matching pursuits with time-frequency dictionaries[J] . IEEE Trans on Signal Processing, 1993, 41(12):3397-3415.
[14] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C] //Proc of IEEE Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers. Piscataway, NJ:IEEE Press, 2002:40-44.
[15] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J] . IEEE Trans on Information Theory, 2012, 58(2):1094-1121.
[16] 孙君顶, 赵慧慧. 图像稀疏表示及其在图像处理中的应用[J] . 红外技术, 2014, 36(7):533-537. (Sun Junding, Zhao Huihui. Image sparse representation and its application in image processing[J] . Infrared Technology, 2014, 36(7):533-537. )
[17] Aronsson G, Crandall M, Juutinen P. A tour of the theory of absolutely minimizing functions[J] . Bulletin of the American Mathematical Society, 2004, 41(4):439-505.
[18] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J] . IEEE Trans on Image Processing, 2009, 18(11):2419-2434.
[19] 黄应清, 赵锴, 蒋晓瑜. 基于核空间类间平均距的径向基函数—支持向量机特征选择算法[J] . 计算机应用研究, 2012, 29(12):4556-4559. (Huang Yingqing, Zhao Kai, Jiang Xiaoyu. Radial basis function-support vector machine feature selection algorithm based on mean distance between classes in kernel space[J] . Application Research of Computers, 2012, 29(12):4556-4559. )
[20] Li Mu, Lu Baoliang. Emotion classification based on gamma-band EEG[C] //Proc of IEEE International Conference on Medicine and Biology Society. Piscataway, NJ:IEEE Press, 2009:1223-1226.
收稿日期 2017/11/3
修回日期 2017/12/21
页码 801-806
中图分类号 TP393.04
文献标志码 A