《计算机应用研究》|Application Research of Computers

改进PF算法在煤与瓦斯突出AE信号去噪中的研究

Research on de-noising of AE signals of coal-gas outbursts by improved PF algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 付华,齐晓娟
机构 辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-016-0720-04
DOI 10.19734/j.issn.1001-3695.2017.09.0924
摘要 煤与瓦斯突出会产生声发射(acoustic emission,AE)信号。针对提取较纯净有效的AE信号问题,提出一种邻域动态调整(D)果蝇算法(fruit fly algorithm,FOA)智能优化粒子滤波(particle filter,PF)的去噪方法。利用果蝇个体表征PF中的每个信号点粒子,优化粒子滤波的重采样过程,并通过动态调整邻域粒子数量来改善果蝇算法的寻优能力和收敛速度。以均方根误差和信噪比为评价指标,对信号采集系统获取的煤与瓦斯突出AE信号分别使用标准粒子滤波、果蝇优化粒子滤波、改进粒子滤波去噪。结果表明,改进粒子滤波法的信噪比提升了15.3 dB左右,且均方根误差最低。与其他两种方法相比,改进粒子滤波去噪效果最优。
关键词 煤与瓦斯突出;声发射信号;去噪;粒子滤波;果蝇算法;邻域动态调整
基金项目 国家自然科学基金资助项目(51274118,71371091)
本文URL http://www.arocmag.com/article/01-2019-03-016.html
英文标题 Research on de-noising of AE signals of coal-gas outbursts by improved PF algorithm
作者英文名 Fu Hua, Qi Xiaojuan
机构英文名 FacultyofElectrical&ControlEngineering,LiaoningTechnicalUniversity,HuludaoLiaoning125105,China
英文摘要 Coal-gas outbursts produce acoustic emission signals (AE). Giving the problem of extracting more pure and effective AE signals, this paper proposed an intelligent optimized particle filter (PF) of neighborhood dynamic adjustment (D) for fruit fly algorithm (FOA). It used each fruit fly individual characterizing signal particle of PF to optimize the resampling process of particle filtering, and adjusting the number of neighboring particles dynamically improved the optimization ability and convergence rate of fruit fly algorithm. Taking the root-mean-square error and signal-to-noise ratio as the evaluation index, from signal acquisition system, it respectively de-noised the AE signals of coal-gas outburst by standard particle filter, fruit fly optimized particle filter and improved particle filter. The experiment results show that the signal-to-noise ratio of the optimized particle filter algorithm is improved by about 15.3 dB, and the root-mean-square error is the lowest. Compared with other two methods, the improved particle filter has the best de-noising effect.
英文关键词 coal-gas outbursts; acoustic emission signal; de-noising; particle filter; fruit fly algorithm; neighborhood dyna-mic adjustment
参考文献 查看稿件参考文献
  [1] 左建平, 裴建良, 刘建锋, 等. 煤岩体破裂过程中声发射行为及时空演化机制[J] . 岩石力学与工程学报, 2011, 30(8):1564-1570. (Zuo Jianping, Pei Jianliang, Liu Jianfeng, et al. Investigation on acoustic emission behavior and its time-space evolution mechanism in failure process of coal-rock combined body[J] . Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8):1564-1570. )
[2] 聂百胜, 何学秋, 王恩元, 等. 煤与瓦斯突出预测技术研究现状及发展趋势[J] . 中国安全科学学报, 2003, 13(6):40-46, 83. (Nie Baisheng, He Xueqiu, Wang Enyuan, et al. Present situation and progress trend of prediction technology of coal and gas outburst[J] . China Safety Science Journal, 2003, 13(6):40-46, 83. )
[3] 许江, 耿加波, 彭守建, 等. 不同含水率条件下煤与瓦斯突出的声发射特性[J] . 煤炭学报, 2015, 40(5):1047-1054. (Xu Jiang, Geng Jiabo, Peng Shoujian, et al. Acoustic emission characteristics of coal and gas outburst under different moisture contents[J] . Journal of China Coal Society, 2015, 40(5):1047-1054. )
[4] 郭民臣, 梅勇, 马英, 等. 基于LabVIEW的声发射信号小波降噪方法研究[J] . 动力工程学报, 2012, 32(6):450-453. (Guo Minchen, Mei Yong, Ma Ying, et al. A wavelet method for denoi-sing of acoustic emission signal based on LabVIEW[J] . Journal of Chinese Society of Power Engineering, 2012, 32(6):450-453. )[5] 陈凯. 基于经验模式分解的去噪方法[J] . 石油地球物理勘探, 2009, 44(5):603-608. (Chen Kai. A new denoising method based on empirical mode decomposition(EMD)[J] . Oil Geophysical Prospecting, 2009, 44(5):603-608. )
[6] 王向华, 覃征, 杨新宇, 等. 阈值去噪下的改进粒子滤波算法[J] . 西安交通大学学报, 2010, 44(2):31-34. (Wang Xianghua, Qin Zheng, Yang Xinyu, et al. Improved particle filter algorithm based on threshold de-noising[J] . Journal of Xi’an Jiaotong University, 2010, 44(2):31-34. )
[7] 向勇, 李岩松. 基于粒子滤波的光学电流互感器信号处理方法研究[J] . 电力系统保护与控制, 2013, 41(18):101-104. (Xiang Yong, Li Yansong. Research of signal processing of optical current transducer based on particle filter[J] . Power System Protection and Control, 2013, 41(18):101-104. )
[8] 段琢华, 蔡自兴, 于金霞. 不完备多模型混合系统故障诊断的粒子滤波算法[J] . 自动化学报, 2008, 34(5):581-587. (Duan Zhuohua, Cai Zixing, Yu Jinxia. Particle filtering algorithm for fault diagnosis of multiple model hybrid systems with incomplete models[J] . Acta Automatica Sinica, 2008, 34(5):581-587. )
[9] 王晶, 宋策, 杨立保. 融合GrabCut的粒子滤波目标跟踪算法[J] . 仪器仪表学报, 2014, 35(S2):20-27. (Wang Jing, Song Ce, Yang Libao. GrabCut combined particle filter algorithm for tracking target[J] . Chinese Journal of Scientific Instrument, 2014, 35(S2):20-27. )
[10] 胡士强, 敬忠良. 粒子滤波算法综述[J] . 控制与决策, 2005, 20(4):361-365, 371. (Hu Shiqiang, Jing Zhongliang. Overview of particle filter algorithm[J] . Control and Decision, 2005, 20(4):361-365, 371. )
[11] 王林, 吕盛祥, 曾宇容. 果蝇优化算法研究综述[J] . 控制与决策, 2017, 32(7):1153-1162. (Wang Lin, Lyu Shengxiang, Zeng Yurong. Literature survey of fruit fly optimization algorithm[J] . Control and Decision, 2017, 32(7):1153-1162. )
[12] 郑晓龙, 王凌. 随机资源约束项目调度问题基于序的果蝇算法[J] . 控制理论与应用, 2015, 32(4):540-545. (Zheng Xiaolong, Wang Ling. An order-based fruit fly optimization algorithm for stochastic resource-constrained project scheduling[J] . Control Theory & Applications, 2015, 32(4):540-545. )
[13] 王晓伟, 刘占生, 窦唯. 基于AR模型的声发射信号到达时间自动识别[J] . 振动与冲击, 2009, 28(11):79-83, 204. (Wang Xiaowei, Liu Zhansheng, Dou Wei. Automatic arrival time identification of acoustic emission signals based on AR model[J] . Journal of Vibration and Shock, 2009, 28(11):79-83, 204. )
[14] 艾婷, 张茹, 刘建锋, 等. 三轴压缩煤岩破裂过程中声发射时空演化规律[J] . 煤炭学报, 2011, 36(12):2048-2057. (Ai Ting, Zhang Ru, Liu Jianfeng, et al. Space-time evolution rules of acoustic emission locations under triaxial compression[J] . Journal of China Coal Society, 2011, 36(12):2048-2057. )
[15] 王恩元, 何学秋, 刘贞堂, 等. 煤体破裂声发射的频谱特征研究[J] . 煤炭学报, 2004, 29(3):289-292. (Wang Enyuan, He Xueqiu, Liu Zhentang, et al. Study on frequency spectrum characte-ristics of acoustic emission in coal or rock deformation and fracture[J] . Journal of China Coal Society, 2004, 29(3):289-292. )
收稿日期 2017/9/22
修回日期 2017/10/31
页码 720-723,741
中图分类号 TP391
文献标志码 A