《计算机应用研究》|Application Research of Computers


Detection of anomalies in GPS data before and after earthquakes

免费全文下载 (已被下载 次)  
作者 李南,孔祥增,林岭
机构 1.福建农林大学 计算机与信息学院,福州 350000;2.福建师范大学 数学与信息学院,福州 350000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-013-0706-05
DOI 10.19734/j.issn.1001-3695.2017.09.0931
摘要 目前对地震前兆异常的研究主要集中在“热”和“电”等方面,很少涉及基准站的GPS数据。然而已经有学者证明震中附近基准站的GPS时间序列坐标数据中也蕴涵着大地震的前兆信息。针对2001—2010年间美国本土发生的具有代表性的三个地震进行了研究,将Martingale理论运用于GPS数据处理,提出一种异常提取算法,进而对地震前后震中附近多个基准站的GPS数据进行分析。实验结果表明,算法能够有效地反映大地震前后GPS数据中异常的变化趋势,为使用GPS数据对大地震进行预报提供了更多可能。
关键词 地震;Martingale理论;异常提取
基金项目 国家自然科学基金青年基金资助项目(41601477)
本文URL http://www.arocmag.com/article/01-2019-03-013.html
英文标题 Detection of anomalies in GPS data before and after earthquakes
作者英文名 Li Nan, Kong Xiangzeng, Lin Ling
机构英文名 1.CollegeofComputer&InformationScience,FujianAgriculture&ForestryUniversity,Fuzhou350000,China;2.CollegeofMathematics&Information,FujianNormalUniversity,Fuzhou350000,China
英文摘要 Most research studies on forecasting of earthquakes focus on thermal or electrical aspects. Scholars have proved GPS time series also contains precursory information for large earthquakes. For the problems mentioned before, three typical earthquakes hit America from 2001 to 2010 were investigated by using GPS data of several GPS reference stations near the epicenters. This paper proposed an algorithm based on Martingale theory to detect the anomalies in GPS data. The experimental results show that the proposed algorithm can effectively reflect the change process in GPS data before and after large earthquakes, which offers more possibilities for earthquake forecast from GPS data.
英文关键词 earthquake; Martingale theory; anomaly detection
参考文献 查看稿件参考文献
  [1] Saradjian M R, Alhoondzadeh M. Thermal anomalies detection before strong earthquakes (M>6, 0) using interquartile, wavelet and Kalman filter method[J] . Natural Hazards and Earth System Sciences, 2011, 11(1):1099-1108.
[2] Honkura Y, Oshiman N, Matsushima M, et al. Rapid changes in the electrical state of the 1999 Izmit earthquake rupture zone[J] . Nature Communications, 2013, 4:Article No. 2116.
[3] Kong Xiangzeng, Bi Yaxin, Glass D H. Detecting seismic anomalies in outgoing long-wave radiation data[J] . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2):649-660.
[4] Han Peng, Hattori K, Hirokawa M, et al. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan during 2001-2010[J] . Journal of Geophysical Research:Space Physics, 2014, 119(6):4998-5011.
[5] Němec F, Santolík O, Parrot M. Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes:a statistical study[J] . Journal of Geophysical Research Atmospheres, 2009, 114(4):1-10.
[6] Liu J Y, Chen Y I, Huang C H, et al. A statistical study of lightning activities and M≥5. 0 earthquakes in Taiwan during 1993-2004[J] . Surveys in Geophysics, 2015, 36(6):851-859.
[7] Kuo Chengling, Lee L C, Heki K. Preseismic TEC changes for Tohoku-Oki earthquake:comparisons between simulations and observations[J] . Terrestrial, Atmospheric & Oceanic Sciences, 2015, 26(1):63-72.
[8] 张燕, 吴云, 段维波, 等. GPS长趋势变化与大地震的关系[J] . 武汉大学学报:信息科学版, 2012, 37(6):675-678. (Zhang Yan, Wu Yun, Duan Weibo, et al. Relation between change of GPS long trend and big earthquake[J] . Geomatics and Information Science of Wuhan University, 2012, 37(6):675-678. )
[9] Wang Ting, Zhuang Jiancang, Kato T, et al. Assessing the potential improvement in short-term earthquaks forcasts from incorporation of GPS data[J] . Geophysical Research Letters, 2013, 40(11):1-5.
[10] Sagiya T, Miyazaki S, Tada T. Continuous GPS array and present-day crustal deformation of Japan[C] //Proc of the 1st Workshop of the APEC Cooperation for Earthquake Simulation. Piscataway, NJ:IEEE Press, 2000:2303-2322.
[11] Yeh Y L, Cheng K C, Wang W H, et al. Very short-term earthquake precursors from GPS signal interference based on the 2013 Nantou and Rueisuei earthquakes, Taiwan[J] . Journal of Asian Earth Scien-ces, 2015, 114(12):312-320.
[12] Wang Ting, Bebbington M. Identifying anomalous signals in GPS data using HMMs:an increased likelihood of earthquakes[J] . Comptutational Statistics and Data Analysis, 2013, 58(2):27-44.
[13] 赵国强, 李鹏. 中国大陆GPS连续观测站测得的日本9. 0级地震同震位移与震前变化[J] . 地震, 2012, 32(2):129-134. (Zhao Guoqiang, Li Peng. Coseismic and pre-seismic displacements observed by fiducial stations in China caused by the 2011 Japan M 9. 0 earthquake[J] . Earthquake, 2012, 32(2):129-134. )
[14] Marzocchi W, Zechar J D, Jordan T H. Bayesian forecast evaluation and ensemble earthquake forecasting[J] . Bulletin of the Seismolo-gical Society of America, 2012, 102(6):2574-2584.
[15] Xiong Pan, Bi Yaxin, Shen Xuhui. Study of outgoing longwave radiation anomalies associated with Haiti earthquake[J] . Natural Hazards & Earth System Sciences, 2010, 10(10):2169-2178.
[16] Konstantaras A, Varley M R, Vallianatos F, et al. Detection of weak seismo-electric signals upon the recordings of the electrotelluric field by means of neuro-fuzzy technology[J] . IEEE Geoscience & Remote Sensing Letters, 2007, 4(1):161-165.
[17] 李正媛, 陈晶, 王丽娜, 等. 一种基于误差和关键点的地震前兆观测数据异常挖掘算法[J] . 计算机应用研究, 2011, 28(8):2897-2901. (Li Zhengyuan, Chen Jing, Wang Lina, et al. Abnormity mining based on error and key-point in seismic precursory observation data[J] . Application Research of Computers, 2011, 28(8):2897-2901. )
[18] Ho S S, Wechsler H. A martingale framework for detecting changes in data streams by testing exchangeability[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(12):2113-2127.
[19] Rebischung P, Griffiths J, Ray J, et al. IGS08:the IGS realization of ITRF 2008[J] . GPS Solutions, 2012, 16(4):483-494.
[20] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient K-means clustering algorithm:analysis and implementation[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7):881-892.
[21] Wu Lixin, Qin Kai, Liu Shanjun. GEOSS-Based thermal parameters analysis for earthquake anomaly recognition[J] . Proceedings of the IEEE, 2012, 100(10):2891-2907.
[22] Vork V, Nouretdinov I, Gammerman A. Testing exchangeability on-line[C] //Proc of the 12th International Conference on Machine Learning. San Francisco:Morgan Kaufmann, 2003:768-775.
收稿日期 2017/9/30
修回日期 2017/11/3
页码 706-710
中图分类号 TP301.6
文献标志码 A