《计算机应用研究》|Application Research of Computers

基于核学习方法的短时交通流量预测

Short-term traffic flow forecasting based on kernel learning methods

免费全文下载 (已被下载 次)  
获取PDF全文
作者 王秋莉,李军
机构 兰州交通大学 自动化与电气工程学院,兰州 730070
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2019)03-011-0696-05
DOI 10.19734/j.issn.1001-3695.2017.09.0916
摘要 基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较大规模数据集的学习;核偏最小二乘(KPLS)方法将输入变量投影在潜在变量上,利用输入与输出变量之间的协方差信息提取潜在特征;核极限学习机(KELM)方法用核函数表示未知的隐含层非线性特征映射,通过正则化最小二乘算法计算网络的输出权值,能以极快的学习速度获得良好的推广性。为验证所提方法的有效性,将KELM、KPLS、ALD-KRLS用于不同实测交通流数据中,在同等条件下,与现有方法进行比较。实验结果表明,不同核学习方法的预测精度和训练速度均有所提高,体现了核学习方法在短时交通流量预测中的应用潜力。
关键词 核学习方法;短时交通流;预测
基金项目 国家自然科学基金资助项目(51467008)
本文URL http://www.arocmag.com/article/01-2019-03-011.html
英文标题 Short-term traffic flow forecasting based on kernel learning methods
作者英文名 Wang Qiuli, Li Jun
机构英文名 SchoolofAutomation&ElectricalEngineering,LanzhouJiaotongUniversity,Lanzhou730070,China
英文摘要 Based on the powerful nonlinear mapping ability of kernel learning, this paper proposed a class of kernel learning method for the short-term traffic flow forecasting. Kernel recursive least squares (KRLS) method using approximate linear dependence (ALD) technique could reduce the computational complexity and storage capacity, the KRLS method was an online kernel learning method and was suitable for training on large-scale data sets. Kernel partial least square (KPLS) method utilized the covariance between input and output variables to extract latent features. Kernel extreme learning machine(KELM) method used the kernel function to substitute for the unknown nonlinear feature mapping of the hidden layer, in addition, the output weights of the networks could also be analytically determined by using regularization least square algorithm, hence KELM method provided better generalization performance at a much faster learning speed. In order to verify the validity of the proposed kernel learning method, this paper respectively applied the employed KELM, KPLS and ALD-KRLS methods to different traffic flow forecasting instances in different area, compared to the other methods under the same conditions. Experimental results show that the proposed kernel-based learning methods have higher forecasting accuracy and improves training speed in the short-term traffic flow forecasting.
英文关键词 kernel learning methods; short-term traffic flow; forecasting
参考文献 查看稿件参考文献
  [1] Lippi M, Bertini M, Frasconi P. Short-term traffic flow forecasting:an experimental comparison of time-series analysis and supervised learning[J] . IEEE Trans on Intelligent Transportation Systems, 2013, 14(2):871-882.
[2] Sun Shiliang, Zhang Changshui, Yu Guoqiang. A Bayesian network approach to traffic flow forecasting[J] . IEEE Trans on Intelligent Transportation Systems, 2006, 7(1):124-132.
[3] Messer C, Thomas U I. Short-term freeway traffic volume forecasting using radial basis function neural network[J] . Transportation Research Record:Journal of the Transportation Research Board, 1998, 1651(1):39-47.
[4] 李军, 黄杰. 基于自组织映射神经网络的局部自回归方法在网络流量预测中的应用[J] . 信息与控制, 2016, 45(1):120-128. (Li Jun, Huang Jie. Application of local auto-regression method based on self-organizing map neural network in network traffic prediction[J] . Information and Control, 2016, 45(1):120-128. )
[5] 许榕, 周东, 蒋士正, 等. 自适应粒子群神经网络交通流预测模型[J] . 西安交通大学学报, 2015, 49(10):103-108. (Xu Rong, Zhou Dong, Jiang Shizheng, et al. A traffic forecasting model using optimization trained neural network[J] . Journal of Xi’an Jiaotong University, 2015, 49(10):103-108. )
[6] Zhang Yunlong, Xie Yuanchang. Forecasting of short term freeway volume with support vector machines[J] . Transportation Research Record, 2007, 12(2):92-99.
[7] 陈小波, 刘祥, 韦中杰, 等. 基于GA-LSSVR模型的路网短时交通流预测研究[J] . 交通运输系统工程与信息, 2017, 17(1):60-66, 81. (Chen Xiaobo, Liu Xiang, Wei Zhongjie, et al. Short-term traffic flow prediction of road network based on GA-LSSVR model[J] . Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1):60-66, 81. )
[8] 商强, 杨兆升, 张伟, 等. 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J] . 吉林大学学报:工学版, 2016, 46(6):1792-1798. (Shang Qiang, Yang Zhaosheng, Zhang Wei, et al. Short-term traffic flow prediction based on singular spectrum analysis and CKF-LSSVM[J] . Journal of Jilin University:Engineering and Technology Edition, 2016, 46(6):1792-1798. )[9] Huang Guangbin, Zhu Qinyu, Siew C K. Extreme learning machine:a new learning scheme of feed forward neural networks[C] //Proc of IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE Press, 2004:985-990.
[10] Huang Guangbin, Wang Dianhui, Lan Yuan. Extreme learning machines:a survey[J] . International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
[11] 商强, 杨兆升, 李志林, 等. 基于相空间重构和RELM的短时交通流量预测[J] . 华南理工大学学报:自然科学版, 2016, 44(4):109-114. (Shang Qiang, Yang Zhaosheng, Li Zhilin, et al. Short-term traffic flow prediction based on phase space reconstruction and RELM[J] . Journal of South China University of Technology:Natural Science Edition, 2016, 44(4):109-114. )
[12] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测[J] . 物理学报, 2016, 65(13):39-48. (Li Jun, Li Dachao. Wind power power time series prediction based on optimized nuclear extreme learning machine[J] . Acta Physica Sinica, 2016, 65(13):39-48. )
[13] 马超, 张英堂. 在线核极限学习机及其在时间序列预测中的应用[J] . 信息与控制, 2014, 43(5):624-629. (Ma Chao, Zhang Yingtang. On-line nuclear extreme learning machine and its application in time series prediction[J] . Information and Control, 2014, 43(5):624-629. )
[14] Chen Qisong, Chen Xiaowei, Wu Yun. Optimization algorithm with kernel PCA to support vector machines for time series prediction[J] . Journal of Computers, 2010, 5(3):380-387.
[15] Sun Zhanquan, Fox G. Traffic flow forecasting based on combination of multidimensional scaling and SVM[J] . International Journal of Intelligent Transportation Systems Research, 2014, 12(1):20-25.
[16] Rosipal R, Trejo L. Kernel partial least squares regression in reproducing kernel Hilbert space[J] . Journal of Machine Learning Research, 2001, 2(2):97-123.
[17] Engel Y, Mannor S, Meir R. The kernel recursive least-squares algorithm[J] . IEEE Trans on Signal Processing, 2004, 52(8):2275-2285.
[18] Fan Haijin, Song Qing. A sparse kernel algorithm for online time series data prediction[J] . Expert Systems with Applications, 2013, 40(6):2174-2181.
[19] 李军, 董海鹰. 基于小波核偏最小二乘回归方法的混沌系统建模研究[J] . 物理学报, 2008, 57(8):4756-4765. (Li Jun, Dong Haiying. Modeling of chaotic systems based on wavelet kernel partial least squares regression[J] . Acta Phyica Sinica, 2008, 57(8):4756-4765. )
收稿日期 2017/9/12
修回日期 2017/10/25
页码 696-700
中图分类号 TP273.5
文献标志码 A