《计算机应用研究》|Application Research of Computers

一种面向共享账号的个性化推荐算法

Personalized recommendation algorithm for shared account

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李伟,刘学军,徐新艳
机构 南京工业大学 计算机科学与技术学院,南京 211816
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)10-2912-04
DOI 10.3969/j.issn.1001-3695.2018.10.007
摘要 为了解决多用户共享账号情况下,账号内部分用户得不到有效推荐的问题,提出PRASA(personalized recommendation algorithm for shared account)算法,首先利用LDA(latent Dirichlet allocation)主题模型构建项目特征向量,接着利用DPC(density peaks based clustering)算法对项目进行聚类分组,为分组后的每组项目分别进行推荐,对于离群点进行单独处理后产生推荐,保证推荐结果可以覆盖更广泛。实验结果表明,提出的PRASA算法可以有效地为共享账号的用户产生合适的推荐。
关键词 共享账号;推荐系统;协同过滤;推荐解释
基金项目 国家自然科学基金资助项目(61203072)
江苏省重点研发计划资助项目(BE2015697)
本文URL http://www.arocmag.com/article/01-2018-10-007.html
英文标题 Personalized recommendation algorithm for shared account
作者英文名 Li Wei, Liu Xuejun, Xu Xinyan
机构英文名 SchoolofComputerScience&Engineering,NanjingTechUniversity,Nanjing211816,China
英文摘要 In order to solve the problem of multi-user sharing account, this paper proposed the PRASA (personalized recommendation algorithm for shared account) algorithm. Firstly, the algorithm constructed the item’s feature vector by using the LDA (latent Dirichlet allocation) theme model. Then it grouped the items and recommended for each group of items and each of the outliers, the recommended results could be covered more widely in this way. The experimental results show that the proposed PRASA algorithm can effectively generate the appropriate recommendations for the users that shared the same account.
英文关键词 shared account; recommendation system; collaborative filtering; explaining recommendations
参考文献 查看稿件参考文献
  [1] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J] . 软件学报, 2012, 23(1):1-20.
[2] 许海玲, 吴潇, 李晓东, 等. 互联网推荐系统比较研究[J] . 软件学报, 2009, 20(2):350-362.
[3] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J] . IEEE Trans on Knowledge & Data Engineering, 2005, 17(6):734-749.
[4] Zhang A, Fawaz N, Ioannidis S, et al. Guess who rated this movie:identifying users through subspace clustering[C] //Proc of the 28th Conference on Uncertainty in Artificial Intelligence. 2012.
[5] Yu Cong, Lakshmanan L V S, Amer-Yahia S. Recommendation diversification using explanations[C] //Proc of the 25th International Conference on Data Engineering. Piscataway, NJ:IEEE Press, 2009:1299-1302.
[6] Kabbur S, Karypis G. NLMF:nonlinear matrix factorization methods for top-N recommender systems[C] //Proc of IEEE International Conference on Data Mining. Washington DC:IEEE Computer Society, 2014:167-174.
[7] 张玉洁, 杜雨露, 孟祥武. 组推荐系统及其应用研究[J] . 计算机学报, 2016, 39(4):745-764.
[8] Serbos D, Qi Shuyao, Mamoulis N, et al. Fairness in package-to-group recommendations[C] //Proc of the 26th International Conference on World Wide Web. 2017:371-379.
[9] Jameson A. More than the sum of its members:challenges for group recommender systems[C] //Proc of Working Conference on Advanced Visual Interfaces. New York:ACM Press, 2004:48-54.
[10] Verstrepen K, Goethals B. Top-N recommendation for shared accounts[C] //Proc of the 9th ACM Conference on Recommender Systems. New York:ACM Press, 2015:59-66.
[11] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J] . Journal of Machine Learning Research, 2003, 3(1):993-1022.
[12] Sun Leilei, Liu Chuanren, Guo Chonghui, et al. Data-driven automatic treatment regimen development and recommendation[C] //Proc of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2016:1865-1874.
[13] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J] . Science, 2014, 344(6191):1492-1496.
收稿日期 2017/5/9
修回日期 2017/6/26
页码 2912-2915,2919
中图分类号 TP301.6
文献标志码 A