基于主题分组与随机游走的App推荐算法 - 计算机应用研究 编辑部 - 《计算机应用研究》唯一官方网站

《计算机应用研究》|Application Research of Computers

基于主题分组与随机游走的App推荐算法

Personalized App recommendation algorithm based on topic grouping and random walk

免费全文下载 (已被下载 次)  
获取PDF全文
作者 赵海燕,张健,曹健
机构 1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.上海交通大学 计算机科学与技术系,上海 200030
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2277-04
DOI 10.3969/j.issn.1001-3695.2018.08.009
摘要 近年来,App的数量呈爆炸式地增长,在庞大数量的手机App中找到合适的App给用户带来了困难。传统的推荐系统方法运用到App推荐上时有很多的局限性,如难以解决冷启动和用户对不同类别的应用具有不同的选择偏好等问题。提出了一种基于主题分组和随机游走的个性化推荐算法TGRW。TGRW针对用户对每类App需要的数量、偏好的程度各不一样的特点,根据用户的App使用记录,构造了user-App组-App的三元图模型,通过对不同的用户在不同的推荐组上设置不同的权重,再利用随机游走算法计算出用户对每个App的偏好概率,从而形成推荐列表。在真实用户数据集上的实验表明,该方法比其他方法在推荐效果上得到了明显提升。
关键词 手机应用;主题模型;随机游走
基金项目 国家自然科学基金资助项目(61272438,61472253)
上海市科委基于大数据的个性化服务资助项目(14511107702)
本文URL http://www.arocmag.com/article/01-2018-08-009.html
英文标题 Personalized App recommendation algorithm based on topic grouping and random walk
作者英文名 Zhao Haiyan, Zhang Jian, Cao Jian
机构英文名 1.SchoolofOptoelectronicInformation&ComputerEngineering,UniversityofShanghaiforScience&Technology,Shanghai200093,China;2.Dept.ofComputerScience&Technology,ShanghaiJiaoTongUniversity,Shanghai200030,China
英文摘要 In recent years, the explosive growth of the number of App brings difficulties for user to find a suitable App. There are many limitations of the traditional recommendation approaches when they are applied to App, such as the cold start problem and different choice bias on different types of applications. This paper proposed a personalized recommendation algorithm TGRW, which was based on topic grouping and random walk. Because users have different biases and underling choice factors on the App of different categories, TGRW firstly divided App into categories based on their description information. Then it constructed a triple tuple graphic model consisting of user, App group and App. By applying random walk to calculate the preferential probability of user to each App, it obtained the recommendation list. Extensive experiments on the real data set shows TGRW gains significant improvements on recommendation performances than other methods.
英文关键词 mobile phone application; topic model; random walk
参考文献 查看稿件参考文献
  [1] Davidsson C. Mobile application recommender system[M] . [S. l. ] :Uppsala University Publications, 2010.
[2] Davidsson C, Moritz S. Utilizing implicit feedback and context to recommend mobile applications from first use[C] //Proc of Workshop on Context-awareness in Retrieval and Recommendation. New York:ACM Press, 2011:19-22.
[3] Liu Yanliang, Hu Yupeng, Yu Ruiyun, et al. Application recommendation at places for mobile users[C] //Proc of the 17th International Symposium on World of Wireless, Mobile and Multimedia Networks. Washington DC:IEEE Computer Society, 2016:1-9.
[4] Girardello A, Michahelles F. AppAware:which mobile applications are hot?[C] //Proc of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services. New York:ACM Press, 2010:431-434.
[5] Karatzoglou A, Baltrunas L, Church K, et al. Climbing the App wall:enabling mobile App discovery through context-aware recommendations[C] //Proc of the 21st ACM International Conference on Information and Knowledge Management. [S. l. ] :Uppsala University Publications. New York:ACM Press, 2012:2527-2530.
[6] Cui Yidong, Liang Kang. A probabilistic top-n algorithm for mobile applications recommendation[C] //Proc of the 5th IEEE International Conference on Broadband Network & Multimedia Technology. Pisca-taway, NJ:IEEE Press, 2013:129-133.
[7] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J] . Journal of Machine Learning Research, 2003, 3(1):993-1022.
[8] Jin Xin, Zhou Yanzan, Mobasher B. A maximum entropy Web re-commendation system:combining collaborative and content features[C] //Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York:ACM Press, 2005:612-617.
[9] Porteous I, Bart E, Welling M. Multi-HDP:a non parametric Baye-sian model for tensor factorization[C] //Proc of the 23rd AAAI Conference on Artificial Intelligence. 2008:1487-1490.
[10] Singh A P, Gordon G J. Relational learning via collective matrix factorization[C] //Proc of the 14th ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining. New York:ACM Press, 2008:650-658.
[11] Pan Tianhao, Zhang Weifeng, Wang Ziyuan, et al. Recommendations based on LDA topic model in Android applications[C] //Proc of IEEE International Conference on Software Quality, Reliability and Security Companion. Piscataway, NJ:IEEE Press, 2016:151-158.
[12] Bagci H, Karagoz P. Random walk based context-aware activity re-commendation for location based social networks[C] //Proc of IEEE International Conference on Data Science and Advanced Analytics. Piscataway, NJ:IEEE Press, 2015:1-9.
[13] Yan Xiaohui, Guo Jiafeng, Lan Yanyan, et al. A biterm topic model for short texts[C] //Proc of the 22nd International Conference on World Wide Web. New York:ACM Press, 2013:1445-1456.
[14] Br A, Berger A, Egger S, et al. A lightweight mobile TV recommender[M] //Changing Television Environments. Berlin:Springer, 2008:143-147.
收稿日期 2017/3/10
修回日期 2017/4/22
页码 2277-2280
中图分类号 TP301.6
文献标志码 A