基于最大偏差相似性准则的交通流聚类算法 - 计算机应用研究 编辑部 - 《计算机应用研究》唯一官方网站

《计算机应用研究》|Application Research of Computers

基于最大偏差相似性准则的交通流聚类算法

Traffic flow clustering algorithm based on maximum deviation similarity criterion

免费全文下载 (已被下载 次)  
获取PDF全文
作者 黄何列,蔡延光,蔡颢,戚远航
机构 广东工业大学 自动化学院,广州 510006
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2274-03
DOI 10.3969/j.issn.1001-3695.2018.08.008
摘要 针对常用聚类算法对随机性强、波动频繁的交通流聚类效果不理想的问题,提出了一种新的交通流相似性度量准则——最大偏差相似性准则,并提出了一种基于最大偏差相似性准则的交通流聚类算法。最大偏差相似性准则能够有效刻画频繁波动交通流曲线的形态相似性,具有简明、合理、灵活等特点;聚类算法无须预先指定类别数,能够保证类间曲线的明显差异性和类内曲线的高度相似性。实验表明,所提出的算法聚类效果明显优于常用聚类算法,聚类结果能够较好地满足实际应用的需要。
关键词 交通流曲线;聚类算法;曲线形态;相似性
基金项目 国家自然科学基金资助项目(61074147)
广东省自然科学基金资助项目(S2011010005059)
广东省教育部产学研结合项目(2012B091000171,2011B090400460)
广东省科技计划项目(2012B050600028,2014B010118004,2016A050502060)
广州市花都区科技计划项目(HD14ZD001)
广州市科技计划项目(201604016055)
本文URL http://www.arocmag.com/article/01-2018-08-008.html
英文标题 Traffic flow clustering algorithm based on maximum deviation similarity criterion
作者英文名 Huang Helie, Cai Yanguang, Cai Hao, Qi Yuanhang
机构英文名 SchoolofAutomation,GuangdongUniversityofTechnology,Guangzhou510006,China
英文摘要 Focusing on the problem that the common clustering algorithms are not ideal for traffic flow with strong randomicity and frequent fluctuation, this paper proposed a new traffic flow similarity measurement which was called maximum deviation similarity criterion (MDSC), and proposed a traffic flow clustering algorithm based on the MDSC. The MDSC could effectively describe the curve shape similarity of frequent fluctuating traffic flow, which had the characteristics of simple, reasonable, flexible and so on. The proposed clustering algorithm did not need to specify the number of classes in advance, which could ensure that the curves of different classes have obvious differences and the curves in the same class have high similarity. The experiments show that the clustering effect of the proposed algorithm is significantly better than that of the common clustering algorithms, and the clustering result of the proposed algorithm can better meet the needs of practical applications.
英文关键词 traffic flow curve; clustering algorithm; curve shape; similarity
参考文献 查看稿件参考文献
  [1] Song Ying, Miller H J. Exploring traffic flow databases using space-time plots and data cubes[J] . Transportation, 2012, 39(2):215-234.
[2] Habtemichael F G, Cetin M. Short-term traffic flow rate forecasting based on identifying similar traffic patterns[J] . Transportation Research, Part C:Emerging Technologies, 2016, 66(5):61-78.
[3] Hou Yi, Edara P, Sun C. Traffic flow forecasting for urban work zones[J] . IEEE Trans on Intelligent Transportation Systems, 2015, 16(4):1761-1770.
[4] Lam W H K, Wong S C, Lo H K. Emerging theories in traffic and transportation and methods for transportation planning and operations[J] . Transportation Research, Part C:Emerging Technologies, 2011, 19(2):169-171.
[5] Yildirimoglu M, Geroliminis N. Experienced travel time prediction for congested freeways[J] . Transportation Research, Part B:Methodological, 2013, 53(4):45-63.
[6] Salamanis A, Meladianos P, Kehagias D, et al. Evaluating the effect of time series segmentation on STARIMA-based traffic prediction mo-del[C] //Proc of the 18th IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2015:2225-2230.
[7] Nath R P D, Lee H J, Chowdhury N K, et al. Modified K-means clustering for travel time prediction based on historical traffic data[C] //Proc of the 14th IEEE International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. Berlin:Springer, 2010:511-521.
[8] Zhang Ting, Xia Yingjie, Zhu Qianqian, et al. Mining related information of traffic flows on lanes by K-medoids[C] //Proc of the 11th IEEE International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE Press, 2014:390-396.
[9] Lin Lei, Wang Qian, Sadek A W. A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction[J] . Transportation Research, Part C:Emerging Techno-logies, 2015, 55(6):444-459.
[10] Chen Ying, Kim J, Mahmassani H S. Pattern recognition using clustering algorithm for scenario definition in traffic simulation-based decision support systems[C] //Proc of the 17th IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2014:798-803.
[11] Ma Xiaolei, Wu Y J, Wang Yinhai, et al. Mining smart card data for transit riders’ travel patterns[J] . Transportation Research, Part C Emerging Technologies, 2013, 36(11):1-12.
[12] Mei Yu, Tang Keshuang, Li Keping. Real-time identification of probe vehicle trajectories in the mixed traffic corridor[J] . Transportation Research, Part C:Emerging Technologies, 2015, 57(8):55-67.
[13] Ding Yi, Fu Xian. Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm[J] . Neurocomputing, 2015, 188(5):233-238.
[14] Lyu Yinghua, Ma Tinghuai, Tang Meili, et al. An efficient and scalable density-based clustering algorithm for datasets with complex structures[J] . Neurocomputing, 2015, 171(1):9-22.
[15] Huang He, Tang Qifeng, Liu Zhen. Adaptive correction forecasting approach for urban traffic flow based on fuzzy-mean clustering and advanced neural network[J] . Journal of Applied Mathematics, 2013, 2013(1):1-7.
[16] 李清泉, 曹晶, 乐阳, 等. 短时车流量模式提取及时变特征分析[J] . 武汉大学学报:信息科学版, 2011, 36(12):1392-1396.
[17] 闫伟, 刘云岗, 王桂华, 等. 基于数据挖掘的交通流预测模型[J] . 系统工程理论与实践, 2010, 30(7):1320-1325.
[18] Jiang Shan, Wang Shuofeng, Li Zhiheng, et al. Fluctuation similarity modeling for traffic flow time series:a clustering approach[C] //Proc of the 18th IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE Press, 2015:848-853.
收稿日期 2017/3/28
修回日期 2017/5/4
页码 2274-2276,2292
中图分类号 TP274
文献标志码 A