基于邻近相点聚类分析的多变量局域多步预测 - 计算机应用研究 编辑部 - 《计算机应用研究》唯一官方网站

《计算机应用研究》|Application Research of Computers

基于邻近相点聚类分析的多变量局域多步预测

Multivariate local multi-step prediction based on cluster analysis of adjacent phase points

免费全文下载 (已被下载 次)  
获取PDF全文
作者 宋士豹,杨淑莹
机构 1.天津理工大学 计算机科学与工程学院,天津 300384;2.计算机视觉与系统教育部重点实验室,天津 300384
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2270-04
DOI 10.3969/j.issn.1001-3695.2018.08.007
摘要 针对高维混沌复杂系统的多步预测问题,提出了一种基于邻近相点聚类分析的多变量局域多步预测模型。首先对于多变量邻近相点的选取,结合邻近相点多步回溯后的演化规律和变量间的关联信息对演化轨迹的影响,提出了一种新的多变量演化轨迹相似度综合判据;然后针对选取全局最优邻近相点耗时长的缺点,提出了一种基于邻近相点聚类分析的新方案来降低多步预测时间,提高预测效率。最后通过Lorenz混沌数据仿真实验,表明该模型具有优良的预测性能。
关键词 聚类分析;局域模型;多步预测;综合判据
基金项目 国家自然科学基金资助项目(61001174)
天津市科技支撑和天津市自然科学基金资助项目(13JCYBJC17700)
本文URL http://www.arocmag.com/article/01-2018-08-007.html
英文标题 Multivariate local multi-step prediction based on cluster analysis of adjacent phase points
作者英文名 Song Shibao, Yang Shuying
机构英文名 1.SchoolofComputerScience&Engineering,TianjinUniversityofTechnology,Tianjin300384,China;2.KeyLaboratoryofComputerVision&SystemforMinistryofEducation,Tianjin300384,China
英文摘要 In order to solve the problem of multi-step prediction for high dimensional chaotic complex systems, this paper proposed a multivariate local multi-step prediction model based on cluster analysis of adjacent phase points. First, it considered the evolution rule of adjacent phase points after multi-step backtracking and the influence of related information on evolutionary trajectory for selecting adjacent phase points. So this paper proposed a new multivariate evolutionary trajectory similarity criterion. Then, the traditional model took a long time to select the optimal phase points. To overcome this shortcoming, it proposed a new method based on cluster analysis of adjacent phase points. This method can reduce the multi-step prediction time and improve prediction efficiency. Finally, the simulation results of Lorenz chaotic data show that this model has good prediction performance.
英文关键词 cluster analysis; local model; multi-step prediction; synthetic criterion
参考文献 查看稿件参考文献
  [1] Findley D F, Ptscher B M, Wei C Z. Modeling of time series arrays by multistep prediction or likelihood methods[J] . Journal of Econometrics, 2004, 118(1-2):151-187.
[2] Radfar A, Rockaway T D. Captured runoff prediction model by permeable pavements using artificial neural networks[J] . Journal of Infrastructure Systems, 2016, 22(3):04016007.
[3] Zhou Lin, Li Furong, Tong Xing. Active network management considering wind and load forecasting error[J] . IEEE Trans on Smart Grid, 2016, 8(6):2694-2701.
[4] Zhang Jian, Li Song. Financial time series analysis model for stock index forecasting[J] . International Journal of Simulation Systems, Science & Techno, 2016, 17(16):12.
[5] Memon S, Song T L, Kim T H. Smoothing data association for target trajectory estimation in cluttered environments[J] . EURASIP Journal on Advances in Signal Processing, 2016, 2016(1):1-13.
[6] Horányi A, Cardinali C, Centurioni L. The global numerical weather prediction impact of mean-sea-level pressure observations from drifting buoys[J] . Quarterly Journal of the Royal Meteorological Society, 2017, 143(703):974-985.
[7] Tariq I, Chen Tao, Kirkby N F, et al. Modelling and Bayesian adaptive prediction of individual patients’ tumour volume change during radiotherapy[J] . Physics in Medicine & Biology, 2016, 61(5):2145-2161.
[8] Vinoth K C, Natarajan V. Hybrid local prediction error-based difference expansion reversible watermarking for medical images[J] . Computers & Electrical Engineering, 2016, 53(7):333-345.
[9] Wen Long, Li Xinyu, Gao Liang, et al. Surface roughness prediction in end milling by using predicted point oriented local linear estimation method[J] . International Journal of Advanced Manufacturing Technology, 2016, 84(9):2523-2535.
[10] Patra A, Das S, Mishra S N, et al. An adaptive local linear optimized radial basis functional neural network model for financial time series prediction[J] . Neural Computing & Applications, 2015, 28(1):1-10.
[11] Li Yanling, Zhang Yunpeng, Wang Jing, et al. The Volterra adaptive prediction method based on matrix decomposition[J] . Journal of Interdisciplinary Mathematics, 2016, 19(2):363-377.
[12] Batista E L O, Rui S. A reduced-rank approach for implementing higher-order Volterra filters[J] . Eurasip Journal on Advances in Signal Processing, 2016, 2016(12):118.
[13] 方芬. 多变量混沌时间序列Volterra自适应实时预测[J] . 系统工程与电子技术, 2009, 31(10):2476-2479.
[14] 江岳春, 张丙江, 邢方方, 等. 基于混沌时间序列GA-VNN模型的超短期风功率多步预测[J] . 电网技术, 2015, 39(8):2160-2166.
[15] Zhang Xuguang, Ouyang Meiling, Zhang Xufeng. Small scale crowd behavior classification by Euclidean distance variation-weighted network[J] . Multimedia Tools & Applications, 2016, 75(19):11945-11960.
[16] 杜杰, 曹一家, 刘志坚, 等. 混沌时间序列的局域高阶Volterra滤波器多步预测模型[J] . 物理学报, 2009, 58(9):5997-6005.
[17] 王桓, 何怡刚, 侯周国, 等. 基于夹角余弦的混沌局域加权线性预测算法[J] . 高电压技术, 2009, 35(6):1483-1487.
[18] Guo Yina, Liu Qijia, Wang Anhong, et al. Optimized phase-space reconstruction for accurate musical-instrument signal classification[J] . Multimedia Tools & Applications, 2017, 76(20):20719-20737.
[19] Pang Yanjie, Zhang Jiashu. A hierarchical alternative updated adaptive Volterra filter with pipelined architecture[J] . Digital Signal Processing, 2016, 56(9):67-78.
[20] Pascoal C, Oliveira M R, Pacheco A, et al. Theoretical evaluation of feature selection methods based on mutual information[J] . Neurocomputing, 2016, 226(2):168-181.
[21] Oh B S, Sun Lei, Ahn C S, et al. Extreme learning machine based mutual information estimation with application to time-series change-points detection[J] . Neurocomputing, 2017, 261(10):204-206.
收稿日期 2017/3/26
修回日期 2017/4/26
页码 2270-2273,2319
中图分类号 TP301.6
文献标志码 A