空间众包中的位置隐私保护技术综述 - 计算机应用研究 编辑部 - 《计算机应用研究》唯一官方网站

《计算机应用研究》|Application Research of Computers

空间众包中的位置隐私保护技术综述

Survey on location privacy preservation technology in spatial crowdsourcing

免费全文下载 (已被下载 次)  
获取PDF全文
作者 安莹,秦科,罗光春
机构 电子科技大学 计算机科学与工程学院,成都 611731
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)08-2241-04
DOI 10.3969/j.issn.1001-3695.2018.08.001
摘要 随着移动设备和无线网络的迅速发展,传感器能够更加精确地获取用户的位置、移动速度和方向等信息,空间众包中用户的位置隐私安全问题日益凸显,基于空间众包的位置隐私保护技术成为互联网隐私领域的研究热点。首先系统介绍了空间众包的基本概念、工作流程以及已有空间众包平台;归纳了空间众包中基于差分隐私、空间匿名以及加密技术的三种主流的隐私保护模型,对比分析了三种主流的隐私保护方法。最后总结并展望了未来的研究方向。
关键词 空间众包;隐私保护;k-匿名;差分隐私
基金项目 电子科技大学中央高校基本科研业务费资助项目(ZYGX2016J083)
本文URL http://www.arocmag.com/article/01-2018-08-001.html
英文标题 Survey on location privacy preservation technology in spatial crowdsourcing
作者英文名 An Ying, Qin Ke, Luo Guangchun
机构英文名 SchoolofComputerScience&Engineering,UniversityofElectronicScience&TechnologyofChina,Chengdu611731,China
英文摘要 Due to the rapid development of the mobile devices and the wireless network, sensors could accurately obtain the users’ information such as position, moving speed and the direction, location privacy is becoming considerably important. The location privacy protection technology based on spatial crowdsourcing has become a hot research topic in the field of Internet privacy. This paper discussed the basic concept of spatial crowdsourcing, procedure and some application platforms. It analyzed and summarized of the state-of-the-art privacy preservation models based on differential privacy, also included spatial cloaking and encryption technology in spatial crowdsourcing. At last, it presented the future research work.
英文关键词 spatial crowdsourcing; privacy preservation; k-anonymity; differential privacy
参考文献 查看稿件参考文献
  [1] Howe J. The rise of crowdsourcing[J] . Wired Magazine, 2006, 14(6):1-4.
[2] Kazemi L, Shahabi C. GeoCrowd:enabling query answering with spatial crowdsourcing[C] //Proc of the 20th International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2012:189-198.
[3] gMission[EB/OL] . (2014-01-05)[2017-06-05] . http://gmission. github. io/.
[4] MediaQ[EB/OL] . (2014-04-21)[2017-06-05] . http://mediaq. usc. edu:8080/home/#about.
[5] What TaskRabbit offers[EB/OL] . (2017-08-25). https://support. taskrabbit. com/hc/en-us/articles/204411410-What-TaskRabbit-Offers.
[6] Zhao Yongjian, Han Qi. Spatial crowdsourcing:current state and future directions[J] . IEEE Communications Magazine, 2016, 54(7):102-107.
[7] 吴振刚, 孙惠平, 关志, 等. 连续空间查询的位置隐私保护综述[J] . 计算机应用研究, 2015, 32(2):321-325.
[8] 冯剑红, 李国良, 冯建华. 众包技术研究综述[J] . 计算机学报, 2015, 38(9):1713-1726.
[9] Chen Zhao, Fu Rui, Zhao Ziyuan, et al. gMission:a general spatial crowdsourcing platform[J] . Proceedings of the VLDB Endowment, 2014, 7(13):1629-1632.
[10] DiDi[EB/OL] . [2017-06-05] . http://www. xiaojukeji. com/website/about. html.
[11] BaiDuWaiMai[EB/OL] . [2017-06-05] . http://waimai. baidu. com/waimai?qt=about.
[12] 张琳, 刘彦, 王汝传. 位置大数据服务中基于差分隐私的数据发布技术[J] . 通信学报, 2016, 37(9):46-54.
[13] Hassan U U, Curry E. Multi-armed bandit approach to online spatial task assignment[C] //Proc of the 11th International Conference on Ubiquitous Intelligence and Computing. Washington DC:IEEE Computer Society, 2014:212-219.
[14] McSherry F, Talwar K. Mechanism design via differential privacy[C] //Proc of the 48th Annual IEEE Symposium on Foundations of Computer Science. Washington DC:IEEE Computer Society, 2007:94-103.
[15] Dwork C, Roth A. The algorithmic foundations of differential privacy[J] . Foundations & Trends in Theoretical Computer Science, 2014, 9(3-4):211-407.
[16] To H, Ghinita G, Shahabi C. Framework for protecting worker location privacy in spatial crowdsourcing[J] . Proceedings of the VLDB Endowment, 2014, 7(10):919-930.
[17] Xiong Ping, Zhang Lefeng, Zhu Tianqing. Reward-based spatial crowdsourcing with differential privacy preservation[J] . Enterprise Information Systems, 2016, 11(10):1-18.
[18] Qardaji W, Yang Weining, Li Ninghui. Differentially private grids for geospatial data[C] //Proc of the 29th International Conference on Data Engineering. Washington DC:IEEE Computer Society, 2013:757-768.
[19] Sweeney L. k-anonymity:a model for protecting privacy[J] . International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5):557-570.
[20] 吴英杰, 唐庆明, 倪巍伟, 等. 基于取整划分函数的k匿名算法[J] . 软件学报, 2012, 23(8):2138-2148.
[21] Hu Jie, Huang Liusheng, Li Lu, et al. Protecting location privacy in spatial crowdsourcing[M] //Web Technologies and Applications. Cham:Springer International Publishing, 2015:113-124.
[22] Chow C Y, Mokbel M F, Liu Xuan. Spatial cloaking for anonymous location-based services in mobile peer-to-peer environments[J] . GeoInformatica, 2011, 15(2):351-380.
[23] Kazemi L, Shahabi C. A privacy-aware framework for participatory sensing[J] . ACM SIQKDD Explorations Newsletter, 2011, 13(1):43-51.
[24] Kleinberg J, Tardos . Algorithm design[M] . Boston:Addison Wesley, 2005.
[25] Vu K, Zheng Rong, Gao Jie. Efficient algorithms for k-anonymous location privacy in participatory sensing[C] //Proc of IEEE INFOCOM. Piscataway, NJ:IEEE Press, 2012:2399-2407.
[26] Datar M, Immorlica N, Indyk D, et al. Locality-sensitive hashing scheme based on p-stable distributions[C] //Proc of the 20th Annual Symposium on Computational Geometry. New York:ACM Press, 2004:253-262.
[27] Shen Yao, Huang Liusheng, Li Lu, et al. Towards preserving worker location privacy in spatial crowdsourcing[C] // Proc of IEEE Global Communications Conference. Piscataway, NJ:IEEE Press, 2015:1-6.
[28] Yao A C. How to generate and exchange secrets[C] // Proc of the 27th Annual Symposium on Foundations of Computer Science. Washington DC:IEEE Computer Society, 1986:162-167.
[29] Xu Jian, Wang Wei, Pei Jian, et al. Utility-based anonymization using local recoding[C] // Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2006:785-790.
[30] 童咏昕, 袁野, 成雨蓉, 等. 时空众包数据管理技术研究综述[J] . 软件学报, 2017, 28 (1):35-58.
收稿日期 2017/6/8
修回日期 2017/8/31
页码 2241-2244,2264
中图分类号 TP309.2
文献标志码 A