《计算机应用研究》|Application Research of Computers

基于改进混合蜂群算法的非线性电路谐波平衡分析

Nonlinear circuit harmonic balance analysis based on improved hybrid bee colony algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 公忠盛,徐光宪,南敬昌,张云雪
机构 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)07-1970-04
DOI 10.3969/j.issn.1001-3695.2018.07.010
摘要 针对射频电路非线性分析中谐波平衡方程求解问题,提出一种基于高斯扰动、锦标赛选择策略以及拟牛顿局部寻优算子(L-BFGS)的改进混合蜂群算法。该算法在搜索方程中引入基于当前全局最优解的高斯扰动,能有效防止算法陷入局部最优并加快算法收敛;跟随蜂采用锦标赛选择策略在一定程度上避免了算法的早熟现象;采用拟牛顿算子进行局部寻优,可使算法快速收敛。实验结果表明,改进混合蜂群算法成功应用于谐波平衡方程求解,与其他求解算法对比,收敛时间较短,性能较优。
关键词 非线性分析;谐波平衡;高斯扰动;L-BFGS算法;蜂群算法
基金项目 国家自然科学基金资助项目(61372058)
辽宁省高校重点实验室资助项目(LJZS007)
国家科技支撑计划资助项目(2013BAH12F02)
辽宁省高等学校杰出青年学者成长资助计划资助项目(LJQ2012029)
本文URL http://www.arocmag.com/article/01-2018-07-010.html
英文标题 Nonlinear circuit harmonic balance analysis based on improved hybrid bee colony algorithm
作者英文名 Gong Zhongsheng, Xu Guangxian, Nan Jingchang, Zhang Yunxue
机构英文名 SchoolofElectrics&InformationEngineering,LiaoningTechnicalUniversity,HuludaoLiaoning125105,China
英文摘要 To solve the problem of harmonic balance equation in nonlinear analysis of RF circuit, this paper proposed an improved hybrid bee colony algorithm based on Gauss perturbation, tournament selection strategy and limited memory broyden fletcher goldfarb shanno(L-BFGS) optimization operator. The algorithm introduced the Gauss perturbation based on the current global optimal solution in the search equation, which could effectively prevent the algorithm from falling into local optimum and speed up the convergence of the algorithm. The following bee used tournament selection strategy avoid the premature convergence of the algorithm to a certain extent. Local optimization used the quasi Newton operator, which made the algorithm converge quickly. The experimental results show that the improved hybrid bee colony algorithm is with short convergence time and better performance compared with other algorithms when it is applied to solve the harmonic balance equation.
英文关键词 nonlinear analysis; harmonic balance; Gaussian perturbation; L-BFGS algorithm; bee colony algorithm
参考文献 查看稿件参考文献
  [1] 赵世杰. 基于谐波平衡法非线性散射函数仿真技术的研究[D] . 西安:西安电子科技大学, 2010.
[2] D’Amore D, Maffezzoni P, Pillan M. A newton-powell modification algorithm for harmonic balance-based circuit analysis[J] . IEEE Trans on Circuits and Systems I:Fundamental Theory and Applications, 1994, 41(2):177-180.
[3] Rizzoli V, Neri A. Harmonic-balance analysis of multitone autonomous nonlinear microwave circuits[C] //Proc of IEEE MTT-S International Microwave Symposium Digest. 1991:107-110.
[4] Rizzoli V, Lipparini A, Masotti D, et al. Efficient circuit-level analysis of large microwave systems by Krylov-subspace harmonic balance[C] //Proc of IEEE MTT-S International Microwave Symposium Digest. 2001:25-28.
[5] 刘文进, 丛日静, 南敬昌, 等. 混合蚁群算法在非线性谐波平衡分析中的应用[J] . 计算机应用研究, 2015, 32(11):3341-3344.
[6] 张伟. 人工蜂群混合优化算法及应用研究[D] . 杭州:浙江大学, 3013.
[7] 赵辉, 李牧东, 翁兴伟. 分布式人工蜂群免疫算法求解函数优化问题[J] . 控制与决策, 2015, 30(7):1181-1188.
[8] 谢娟, 邱剑锋, 闵杰, 等. 具有双重认知能力的人工蜂群算法及性能分析[J] . 计算机科学, 2014, 41(11):269-272.
[9] Ren Ziwu, Wang Zhenhua, Sun Lining. A dual-populations artificial bee colony algorithm[C] //Proc of the 11th World Congress on Intelligent Control and Automation. 2014:5211-5216.
[10] 倪峰. 微波非线性散射函数仿真技术的研究[D] . 西安:西安电子科技大学, 2008.
[11] Farsaei A R, Safian R. A novel method for calculating initial condition in harmonic balance analysis exploiting Volterra series[C] //Proc of International Conference on Advances in Computational Tools for Engineering Applications. 2009:324-328.
[12] Rekaby A, Youssif A A, Eldin A S. Introducing adaptive artificial bee colony algorithm and using it in solving traveling salesman problem[C] //Proc of Science and Information Conference. 2013:502-506.
[13] Xu Haidong, Jiang Mingyan, Xu Kun. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm[J] . Journal of Systems Engineering and Electronics, 2015, 26(2):388-396.
[14] 王珊, 顾幸生. 基于混沌优化的双种群人工蜂群算法[J] . 上海机电学院学报, 2012, 15(1):11-17.
[15] 乔现伟, 乔蕾. 基于限域拟牛顿法的混沌类电磁学机制算法及其在路径寻优中的应用[J] . 计算机应用, 2015, 35(3):696-699.
[16] 孙丹平, 南敬昌, 高明明. 基于 Volterra 级数改进的混合遗传算法在谐波平衡中的应用[J] . 计算机应用研究, 2014, 31(8):2367-2371.
[17] 朱德刚, 孙辉, 赵嘉, 等. 基于高斯扰动的粒子群优化算法[J] . 计算机应用, 2014, 34(3):754-759.
收稿日期 2017/2/27
修回日期 2017/4/14
页码 1970-1973,1995
中图分类号 TP391;TP301.6
文献标志码 A