《计算机应用研究》|Application Research of Computers

结合矩阵分解的混合型社会化推荐算法

Hybrid socialized recommendation algorithm based on matrix factorization

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杨丰瑞,刘彪,杜托
机构 1.重庆邮电大学 通信新技术应用研究中心,重庆 400065;2.重庆重邮信科集团股份有限公司,重庆 401121
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)06-1631-05
DOI 10.3969/j.issn.1001-3695.2018.06.007
摘要 推荐系统是用来解决当今时代信息过载的重要工具。随着在线社交网络的出现和普及,一些基于网络推荐算法研究的出现已经引起研究者的广泛关注。然而大多数信任感知的推荐系统忽略了用户有不同行为偏好在不同的兴趣域。考虑用户间特定域信任网络,并且结合推荐项目之间特征属性信息,提出了一种新型社会化推荐算法(H-PMF)。实验表明,H-PMF算法在评分误差和推荐精度上都取得了很好的效果。
关键词 信任网络;协同过滤;矩阵分解;推荐系统
基金项目 重庆市研究生科研创新基金资助项目(CY15166)
本文URL http://www.arocmag.com/article/01-2018-06-007.html
英文标题 Hybrid socialized recommendation algorithm based on matrix factorization
作者英文名 Yang Fengrui, Liu Biao, Du Tuo
机构英文名 1.CommunicationTechnologyApplicationsResarchCenter,ChongqingUniversityofPosts&Telecommunications,Chongqing400065,China;2.ChongqingInformationTechnologyGroup)Co.Ltd,Chongqing401121,China
英文摘要 Recommender systems (RSs) have become important tools for solving the problem of information overload.With the emergence and popularity of online social networks, some studies on network-based recommendation algorithm have emerged, raising the concern of many researchers.Trust is one kind of important information available in social networks and is often used for performance improvement in social-network-based RSs.However, most trust-aware RSs ignore the fact that the user has different preference in different domains of interest.This paper proposed a new social recommendation algorithm (H-PMF), which not only considered the user-specific domain trust network, but also combined the feature attribute information between recommended items.Experiments show that the H-PMF algorithm has better performance in both scoring error and recommendation accuracy.
英文关键词 trust networks; collaborative filtering; matrix factorization; recommender system
参考文献 查看稿件参考文献
  [1] Durao F, Dolog P. Improving tag-based recommendation with the collaborative value of Wiki pages for knowledge sharing[J] . Journal of Ambient Intelligence and Humanized Computing, 2014, 5(1):21-38.
[2] Koren Y. Collaborative filtering with temporal dynamics[J] . Communications of the ACM, 2010, 53(4):89-97.
[3] Massa P, Avesani P. Trust-aware recommender systems[C] //Proc of ACM Conference on Recommender Systems. New York:ACM Press, 2007:17-24.
[4] Ma Hao, King I, Lyu M R. Learning to recommend with social trust ensemble[C] //Proc of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2009:203-210.
[5] Ma Hao, King I, Lyu M R. Recommender systems with social regularization[C] //Proc of the 4th ACM International Conference on Web Search and Data Mining. New York:ACM Press, 2011:287-296.
[6] Ma Hao, Yang Haixuan, Lyu M R, et al. SoRec:social recommendation using probabilistic matrix factorization[C] //Proc of the 17th ACM Conference on Information and Knowledge Management. New York:ACM Press, 2008:931-940.
[7] 郭磊, 马军, 陈竹敏, 等. 一种结合推荐对象间关联关系的社会化推荐算法[J] . 计算机学报, 2014, 37(1):219-228.
[8] Jiang Meng, Cui Peng, Liu Rui, et al. Social contextual recommendation[C] //Proc of the 21st ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2012:45-54.
[9] Liu Haifeng, Xia Feng, Chen Zhen, et al. TruCom:exploiting domain-specific trust networks for multicategory item recommendation[J] . IEEE Systems Journal, 2017, 11(1):295-304.
[10] Jiang Wei, Yang Liping. Research of improved recommendation algorithm based on collaborative filtering and content prediction[C] //Proc of the 11th International Conference on Computer Science & Education. Piscataway, NJ:IEEE Press, 2016:598-602.
[11] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C] //Proc of the 25th International Conference on Machine Learning. New York:ACM Press, 2008:880-887.
[12] Yin Dawei, Hong Liangjie, Davison B D. Structural link analysis and prediction in microblogs[C] //Proc of the 20th ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2011:1163-1168.
[13] Dueck D, Frey B J. Probabilistic sparse matrix factorization, University of Toronto Technical Report Psi[M] . 2004.
[14] Lawrence E E, Latha R. Analysis of six degrees of separation in facebook using ant colony optimization[C] //Proc of International Conference on Circuit, Power and Computing Technologies. Piscataway, NJ:IEEE Press, 2015:1-5.
[15] Massa P, Avesani P. Trust-aware collaborative filtering for recommender systems[C] //Proc of Confederated International Conferences on the Move to Meaningful Internet Systems. Berlin:Springer, 2004:492-508.
[16] Massa P, Bhattacharjee B. Using trust in recommender systems:an experimental analysis[C] //Proc of International Conference on Trust Management. Berlin:Springer, 2004:221-235.
[17] 杨博, 赵鹏飞. 推荐算法综述[J] . 山西大学学报:自然科学版, 2011, 34(3):337-350.
[18] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M] . [S. l. ] :Springer, 2011:1-35.
收稿日期 2017/1/15
修回日期 2017/2/23
页码 1631-1635
中图分类号 TP391
文献标志码 A