《计算机应用研究》|Application Research of Computers

求解约束优化问题的融合粒子群的教与学算法

Hybrid teaching-learning-based fused with particle swarm optimization of constrained optimization problem

免费全文下载 (已被下载 次)  
获取PDF全文
作者 赵乃刚,李勇,王振荣
机构 1.山西大同大学 数学与计算机科学学院,山西 大同 037009;2.山西省大同市人民政府信息化中心,山西 大同 037009
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)05-1307-03
DOI 10.3969/j.issn.1001-3695.2018.05.006
摘要 针对约束优化问题,提出了一种融合粒子群的教与学算法。算法采用了一种自适应的教学因子,使得算法的搜索性能可以自适应地调整。引入了自我学习和相互学习的学习模式,使得信息交流更加多样化,增强了算法的全局搜索能力;最后根据适应度值将整个种群分为两个子种群,对适应度值差的子种群采用粒子群算法以提升收敛性能,对适应度值优的子种群采用教与学优化算法以增强种群的多样性,通过两种算法的优势互补,提升了算法的整体优化性能。通过在22个标准测试函数的实验和与其他三种算法的比较表明,融合粒子群的教与学算法求解精度高,收敛速度快,它是一种可行、高效的优化算法。
关键词 教与学算法;粒子群算法;约束优化问题;自适应;约束处理
基金项目 国家自然科学基金资助项目(61672331)
山西省高等学校教学改革创新项目(J2017093)
山西大同大学科学研究项目(2016K1)
本文URL http://www.arocmag.com/article/01-2018-05-006.html
英文标题 Hybrid teaching-learning-based fused with particle swarm optimization of constrained optimization problem
作者英文名 Zhao Naigang, Li Yong, Wang Zhenrong
机构英文名 1.CollegeofMathematics&ComputerScience,ShanxiDatongUniversity,DatongShanxi037009,China;2.InformationCenterofDatongPeople'sGovernmentofShanxiProvince,DatongShanxi037009,China
英文摘要 Aiming at the constrained optimization problem, this paper developed a hybrid teaching-learning-based fuse with particle swarm optimization.It adopted an adaptively teaching factors, and it could adjust the search performance of algorithm adaptively. The introduction of the learning mode of self-study and learn from each other made information communication was more diverse and it enhanced the global search ability of the algorithm.Finally, the algorithm divided the whole population into two subpopulations according to the fitness value.The poor particles adopted particle swarm algorithm to improved the convergence of the algorithm, and the better particles adopted teaching-learning-based algorithm to increase the diversity of population.The complementary advantages of both algorithms improved the performance of algorithm. This paper compared the new algorithm with the other three kinds of algorithms on twenty-two test functions, the simulation experiments show that the new algorithm has better performance.It is a feasible and efficient optimization algorithm.
英文关键词 teaching-learning-based; particle swarm optimization; constrained optimization problem; self-adaptive; constraint processing method
参考文献 查看稿件参考文献
  [1] Pan Feng, Li Xiaoting, Zhou Qian, et al. Analysis of standard particle swarm optimization algorithm based on Markov chain[J] . Acta Automatic Sinica, 2013, 39(4):381-389.
[2] Zhao Zengshun, Feng Xiang, Lin Yanyan, et al. Evolved neural network ensemble by multiple heterogeneous swarm intelligence[J] . Neurocomputing, 2015, 149:29-38.
[3] Cheng Long, Hou Zengguang, Lin Yingzi, et al. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks[J] . IEEE Trans on Neural Networks, 2011, 21(5):714-726.
[4] Tan Yue, Tan Guanzheng, Deng Shuguang. Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems[J] . Journal of Central South University, 2014, 21(7):2731-2742.
[5] Zou Guocheng, Jia Liping, Zou Jin. Random-weight based genetic algorithm for multiobjective bilevel mixed linear integer programming[C] //Proc of the 8th International Conference on Natural Computation. Piscataway, NJ:IEEE Press, 2012:693-697.
[6] Wu Jun, Gao Yuelin, Yan Lina. An improved differential evolution algorithm for mixed integer programming problems[C] //Proc of the 9th International Conference on Computational Intelligence and Securi-ty. Piscataway, NJ:IEEE Press, 2013:31-35.
[7] Rao R V, Savsani V J. Teaching-learning-based optimization:an optimization method for uncontinuous non-linear large scale problems[J] . Enigineering Optimization, 2012, 44(2):1447-1462.
[8] 李会荣, 乔希民. 融合差分变异的教与学优化算法[J] . 计算机工程与应用, 2016, 52(5):36-40.
[9] Rao R V, Patel V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems[J] . International Journal of Industrial Engineering Computations, 2012, 3(4):535-560.
[10] Deep K, Singh K P, Kansal M L, et al. A real coded genetic algorithm for solving integer and mixed integer optimization problems[J] . Applied Mathematics and Computation, 2009, 212(2):505-518.
[11] Liao T W. Two hybrid differential evolution algorithms for engineering design optimization[J] . Applied Soft Computing, 2010, 10(4):1188-1199.
收稿日期 2017/1/2
修回日期 2017/2/27
页码 1307-1309
中图分类号 TP301.6
文献标志码 A