《计算机应用研究》|Application Research of Computers

基于网民心理的微博舆论传播模型及仿真研究

Spreading model and simulation analysis of microblog public opinion based on psychology of netizen

免费全文下载 (已被下载 次)  
获取PDF全文
作者 张亚楠,何建佳
机构 上海理工大学 a.管理学院;b.超网络研究中心(中国),上海 200093
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)05-1298-06
DOI 10.3969/j.issn.1001-3695.2018.05.004
摘要 根据社交网络中微博舆论的传播特点,针对不同心理倾向的网民对舆论观点和传播的影响进行研究。通过分析微博事件得出舆论传播中网民的心理特征,并在此基础上构建了基于网民心理的微博舆论传播模型,研究了有向社交网络中不同群体中舆论观点的形成和传播特征。研究结果表明,舆论传播过程中网民的非理性心理会加速信息的传播和扩散,而且当信息可信度有争议时,非理性群体中的大部分个体会传播与该信息相反的观点;另外,当辟谣信息可信度发布不及时或可信度不高时,网民中的非理性心理会加剧该信息的反作用效果。最后通过实例分析验证,该模型与实际相符,可为引导微博舆论提供理论依据。
关键词 社交网络;舆论传播;网民心理;非理性群体
基金项目 国家自然科学基金资助项目(71171135)
上海市高原学科(管理科学与工程)建设项目
上海高校青年教师培养资助计划项目(slg14020)
上海市哲学社会科学规划项目(2016EGL007)
本文URL http://www.arocmag.com/article/01-2018-05-004.html
英文标题 Spreading model and simulation analysis of microblog public opinion based on psychology of netizen
作者英文名 Zhang Yanan, He Jianjia
机构英文名 a.BusinessSchool,b.SuperNetworkResearchCenterChina),UniversityofShanghaiforScience&Technology,Shanghai200093,China
英文摘要 According to the propagation characteristics of microblog public opinion in the social network, this paper studied the influence of Internet users with different psychological inclination on public opinion and communication. Through the analysis of the psychological of microblog users in the dissemination of public opinion, this paper built the microblog public opinion propagation model based on the psychology of Internet users, and then studied the formation and propagation of public opinion in directed social networks. Simulation showed that the irrational psychology of Internet users would accelerate the spreading and diffusion of information in the process of microblog communication. Furthermore most of the irrational group spreaded the opposite view when the credibility of information was controversial. Research had also shown that when the credibility of microblog refuted rumor information was not high or the information release was not in time, the irrational psychological users would exacerbate the adverse effect of the information. Finally, through the instance data analysis, the model is consistent with the reality which can provide theoretical basis for guiding the public opinion of microblog.
英文关键词 social network; public opinion spreading; psychology of Internet users; irrational group
参考文献 查看稿件参考文献
  [1] Newman M E J. The structure and function of complex networks[J] . SIAM Review, 2003, 45(2):167-256.
[2] Sun Ling, Liu Yun, Zeng Qing’an, et al. A novel rumor diffusion model considering the effect of truth in online social media[J] . International Journal of Modern Physics C, 2015, 26(7):1550080.
[3] Hosseini S, Azgomi M A. A model for malware propagation in scale-free networks based on rumor spreading process[J] . Computer Networks, 2016, 108(10):97-107.
[4] Wu Yue, Du Yajun, Li Xianyong, et al. Exploring the spiral of silence in adjustable social networks[J] . International Journal of Modern Physics C, 2015, 26(11):1550125.
[5] Zhou Cangqi, Zhao Qianchuan, Lu Wenbo. Impact of repeated exposures on information spreading in social networks[J] . PLoS One, 2015, 10(10):e0140556.
[6] Qiu Xiaoyan, Zhao Laijun, Wang Jiajia, et al. Effects of time-dependent diffusion behaviors on the rumor spreading in social networks[J] . Physics Letters A, 2016, 380(24):2054-2063.
[7] Fan Pengyi, Li Pei, Jiang Zhihong, et al. Measurement and analysis of topology and information propagation on Sina-microblog[C] //Proc of IEEE International Conference on Intelligence and Security Informatics. Piscataway, NJ:IEEE Press, 2011:396-401.
[8] Jackson M O. Games on networks[J] . Handbook of Game Theory with Economic Applications, 2014, 4(1):95-163.
[9] Kramer A D, Guillory J E, Hancock J T. Experimental evidence of massive-scale emotional contagion through social networks[J] . Proceedings of the National Academy of Sciences, 2014, 111(24):8788-8790.
[10] Tang Liyang, Ni Zhiwei. Emerging opinion leaders in crowd unfollow crisis:a case study of mobile brands in Twitter[J] . Formal Pattern Analysis & Applications, 2016, 19(3):1-13.
[11] 韩少春. 社交网络信息传播特征及数据研究[D] . 北京:北京交通大学, 2016.
[12] Suh B, Hong L, Pirolli P, et al. Want to be retweeted?Large scale analytics on factors impacting retweet in Twitter network[C] //Proc of IEEE International Conference on Social Computing. Piscataway, NJ:IEEE Press, 2010:177-184.
[13] Huang Dongxu, Zhou Jing, Yang Feisheng, et al. Understanding retweeting behaviors in Twitter[J] . Journal of Computational Information Systems, 2015, 11(13):4625-4634.
[14] Zhao Hongyong, Zhu Linhe. Dynamic analysis of a reaction-diffusion rumor propagation model[J] . International Journal of Bifurcation & Chaos, 2016, 26(6):1650101.
[15] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J] . 物理学报, 2012, 61(23):238701.
[16] Liu Xiongding, Li Tao, Wang Yuanmei, et al. Spreading dynamics of a social information model with overlapping community structures on complex networks[J] . Open Access Library Journal, 2016, 3(5):1-11.
[17] Liu Hongli, Xie Yun, Hu Haibo, et al. Affinity based information diffusion model in social networks[J] . International Journal of Modern Physics C, 2014, 25(5):1440004.
[18] 王金龙, 刘方爱, 朱振方. 一种基于用户相对权重的在线社交网络信息传播模型[J] . 物理学报, 2015, 64(5):050501.
[19] Sasaki W, Furukawa Y, Nishiyama Y, et al. SmileWave:sensing and analysis of smile-based emotional contagion over social network:poster abstract[C] //Proc of International Conference on Information Proces-sing in Sensor Networks. Piscataway, NJ:IEEE Press, 2016:64-65.
[20] Ren Donghao, Zhang Xin, Wang Zhenhuang, et al. Weibo events:a crowd sourcing weibo visual analytic system[C] //Proc of Pacific Visualization Symposium. Piscataway, NJ:IEEE Press, 2014:330-334.
[21] 费斯汀格. 认知失调理论[M] . 郑全全, 译. 浙江:浙江教育出版社, 1999.
[22] CML. UCI microblogPCU数据库[EB/OL] . [2016-08-21] . https://archive. ics. uci. edu/ml/datasets/microblogPCU.
收稿日期 2017/1/5
修回日期 2017/3/3
页码 1298-1303,1319
中图分类号 TP391.9
文献标志码 A