《计算机应用研究》|Application Research of Computers

基于数据挖掘技术的在线学习行为研究综述

Survey of online learning behavior research applying data mining technology

免费全文下载 (已被下载 次)  
获取PDF全文
作者 柴艳妹,雷陈芳
机构 中央财经大学 信息学院,北京 100081
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)05-1287-07
DOI 10.3969/j.issn.1001-3695.2018.05.002
摘要 随着慕课快速发展为当下最新、最潮的学习形式,在线学习平台积累了大量学习行为数据,数据挖掘技术被引入在线学习行为的研究,从而涌现出大量的研究成果。为了深入分析在线学习行为研究中数据挖掘技术的整体应用情况,从国内外公认的Web of Science数据库收集2008—2017年3月相关文献进行了统计和可视化分析,介绍了利用数据挖掘技术进行在线学习行为研究的一般流程,并将数据挖掘技术在在线学习行为研究中的应用总结归纳为五类,详细介绍了相关研究成果及代表文献。最后总结并讨论了未来可能的研究方向。
关键词 慕课;在线学习行为;数据挖掘;可视化分析
基金项目 中央财经大学教改项目(020650514003)
中央财经大学课程教学团队建设项目(011459014008/032)
本文URL http://www.arocmag.com/article/01-2018-05-002.html
英文标题 Survey of online learning behavior research applying data mining technology
作者英文名 Chai Yanmei, Lei Chenfang
机构英文名 SchoolofInformation,CentralUniversityofFinance&Economics,Beijing100081,China
英文摘要 With online learning platforms such as MOOCs becoming the latest and the most popular form of learning, the online learning platform had accumulated a large volume of learning data. Consequently data mining was widely used in research on online learning behavior, and massive outstanding achievements related to this had emerged. In order to understand the general situation of online learning research applying data mining, this paper first analyzed the relative literatures using visua-lization method. It searched the literatures data from Web of Science from 2008 to 2017. Secondly it introduced the general process of applying data mining to online learning behavior research. Then it discussed the data mining technology in the application of five categories in the study of online learning behavior, and summarized the relevant research results and literature. Finally it summarized and discussed the possible future research directions.
英文关键词 massive open online courses(MOOC); online learning behavior; data mining; visualization analysis
参考文献 查看稿件参考文献
  [1] 杨为民. 在线学习的现状与发展研究[D] . 兰州:西北师范大学, 2007.
[2] Laura pappano. The year of the MOOC[EB/OL] . (2012-11-04) . http://www. nytimes. com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace. html?pagewanted=all&_r=0.
[3] Romero C, Ventura S. Data mining in education[J] . Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2013, 3(1):12-27.
[4] Romero C, Ventura S, García E. Data mining in course management systems:moodle case study and tutorial[J] . Computers & Education, 2008, 51(1):368-384.
[5] Tang T Y, McCalla G. Smart recommendation for an evolving e-learning system[J] . International Journal on E-Learning, 2005, 4(1):105-129.
[6] Natek S, Zwilling M. Student data mining solution-knowledge mana-gement system related to higher education institutions[J] . Expert Systems with Applications, 2014, 41(14):6400-6407.
[7] Chanchary F H, Haque I, Khalid M S. Web usage mining to evaluate the transfer of learning in a Web-based learning environment[C] //Proc of International Workshop on Knowledge Discovery and Data Mining. Piscataway, NJ:IEEE Press, 2008:249-253.
[8] Feldman J, Monteserin A, Amandi A. Detecting students’perception style by using games[J] . Computers & Education, 2014, 71(2):14-22.
[9] Chen Xin, Vorvoreanu M, Madhavan K P C. Mining social media data for understanding students’learning experiences[J] . IEEE Trans on Learning Technologies, 2014, 7(3):246-259.
[10] Wang Y H, Liao H C. Data mining for adaptive learning in a TESL-based e-learning system[J] . Expert Systems with Applications, 2011, 38(6):6480-6485.
[11] Vaessen B E, Prins F J, Jeuring J. University students’a chievement goals and help-seeking strategies in an intelligent tutoring system[J] . Computers & Education, 2014, 72(11):196-208.
[12] Aher S B, Lobo L M R J. Combination of machine learning algorithms for recommendation of courses in e-learning system based on historical data[J] . Knowledge-Based Systems, 2013, 51(1):1-14.
[13] Talavera L, Gaudioso E. Mining student data to characterize similar behavior groups in unstructured collaboration spaces[C] //Proc of European Conference on Artificial Intelligence. 2004:17-23.
[14] Ayers E, Nugent R, Dean N. A comparison of student skill know-ledge estimates[C] //Proc of International Conference on Educational Data Mining. 2009:1-10.
[15] Chen C M, Hsieh Y L, Hsu S H. Mining learner profile utilizing association rule for Web-based learning diagnosis[J] . Expert Systems with Applications, 2007, 33(1):6-22.
[16] Romero C, Ventura S, Zafra A, et al. Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems[J] . Computers & Education, 2009, 53(3):828-840.
[17] Perera D, Kay J, Koprinska I, et al. Clustering and sequential pattern mining of online collaborative learning data[J] . IEEE Trans on Knowledge & Data Engineering, 2008, 21(6):759-772.
[18] He Wu. Examining students’online interaction in a live video strea-ming environment using data mining and text mining[J] . Computers in Human Behavior, 2013, 29(1):90-102.
[19] Zaane O R. Web usage mining for a better Web-based learning environment[C] //Proc of Conference on Advanced Technology for Education. 2001:357-360.
[20] Silva D, Vieira M. Using data warehouse and data mining resources for ongoing assessment of distance learning[C] //Proc of IEEE International Conference on Advanced Learning Technologies. Washington DC:IEEE Computer Society, 2002:40-45.
[21] Mazza R, Milani C. Exploring usage analysis in learning systems:gaining insights from visualizations[C] //Proc of Workshop on Usage Analysis in Learning Systems at the 12th International Conference on Artificial Intelligence in Education. 2005:65-72.
[22] Morales C R, Soto S V, Pérez A R P, et al. Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems[C] //Current Developments in Technology-Assisted Education. 2006:1016-1020.
[23] Cho H, Gay G, Davidson B, et al. Social networks, communication styles, and learning performance in a CSCL community[J] . Compu-ters & Education, 2007, 49(2):309-329.
[24] Ding N, Bosker R J, Harskamp E G. Exploring gender and gender pairing in the knowledge elaboration processes of students using computer-supported collaborative learning[J] . Computers & Education, 2011, 56(2):325-336.
[25] 李曼丽, 徐舜平, 孙梦嫽. MOOC学习者课程学习行为分析——以“电路原理”课程为例[J] . 开放教育研究, 2015, 21(2):63-69.
[26] Yu P, Own C, Lin L. On learning behavior analysis of Web based interactive environment[C] //Proc of Implementing Curricular Change in Engineering Education. 2001:1-10.
[27] Araya R, Jiménez A, Bahamondez M, et al. Teaching modeling skills using a massively multiplayer online mathematics game[J] . World Wide Web:Internet & Web Information Systems, 2014, 17(2):213-227.
[28] 吴淑苹. 基于数据挖掘的教师网络学习行为分析与研究[J] . 教师教育研究, 2013, 25(3):49-57.
[29] 李爽, 钟瑶, 喻忱, 等. 基于行为序列分析对在线学习参与模式的探索[J] . 中国电化教育, 2017(3):88-95.
[30] Damez M, Bouchon-Meunier B, Ha T, et al. Fuzzy decision tree for user modeling from human-computer interactions[C] //Proc of the 5th International Conference on Human System Learning. 2005:287-302.
[31] Jovanovic M, Vukicevic M, Milovanovic M, et al. Using data mining on student behavior and cognitive style data for improving e-learning systems:a case study[J] . International Journal of Computational Intelligence Systems, 2012, 5(3):597-610.
[32] 吴青, 罗儒国, 王权于. 基于关联规则的网络学习行为实证研究[J] . 现代教育技术, 2015, 25(7):88-94.
[33] Wang F H. On using data-mining technology for browsing log file analysis in asynchronous learning environment[C] //Proc of Confe-rence on Educational Multimedia, Hypermedia and Telecommunication. Berlin:Springer, 2002:2005-2006.
[34] Baker R, Corbett A, Koedinger K. Detecting student misuse of intelligent tutoring systems[C] //Proc of the 7th International Conference on Intelligent Tutoring Systems. 2004:531-540.
[35] Pahl C, Donnellan D. Data mining technology for the evaluation of Web-based teaching and learning systems[C] //Proc of Congress E-learning. 2003:1-7.
[36] Reffay C, Chanier T. How social network analysis can help to measure cohesion in collaborative distance-learning[M] . Berlin:Springer, 2003:343-352.
[37] Rajendran R, Iyer S, Murthy S, et al. A theory-driven approach to predict frustration in an ITS[J] . IEEE Trans on Learning Technologies, 2013, 6(4):378-388.
[38] 王卓, 张铭. 基于贝叶斯知识跟踪模型的慕课学生评价[J] . 中国科技论文, 2015, 10(2):241-246.
[39] Anozie N, Junker B. Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system[C] //Proc of Educational Data Mining AAAI Workshop. Palo Alto, CA:AAAI Press, 2006:1-6.
[40] Arroyo I, Murray T, Woolf B P, et al. Inferring unobservable learning variables from students’help seeking behavior[C] //Proc of International Conference on Intelligent Tutoring Systems. Berlin:Springer, 2004:782-784.
[41] 宗阳, 孙洪涛, 张亨国, 等. MOOCs学习行为与学习效果的逻辑回归分析[J] . 中国远程教育, 2016, 36(5):14-22.
[42] 蒋卓轩, 张岩, 李晓明. 基于MOOC数据的学习行为分析与预测[J] . 计算机研究与发展, 2015, 52(3):614-628.
[43] Pedro M O Z S, Baker R S J D, Bowers A J, et al. Predicting college enrollment from student interaction with an intelligent tutoring system in middle school[J] . Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(11):6897-6904.
[44] Arnold A, Scheines R, Beck J E, et al. Time and attention:students, sessions, and tasks[C] //Proc of AAAI Workshop Educational Data Mining. Palo Alto, CA:AAAI, 2005:62-66.
[45] Cocea M, Weibelzahl S. Can log files analysis estimate learners’ le-vel of motivation?[C] //Proc of the 14th Workshop Adaptivity and User Modeling in Interactive Systems. 2006:32-35.
[46] Feng Mingyu, Heffernan N, Koedinger K. Looking for sources of error in predicting student’s knowledge[C] //Proc of AAAI Workshop on Educational Data Mining. Palo Alto, CA:AAAI Press, 2005:1-8.
[47] Romero C, Ventura S, Espejo P G, et al. Data mining algorithms to classify students[C] //Proc of the International Conference on Educational Data Mining. 2008:8-17.
[48] Minaei-Bidgoli B, Kashy D, Kortemeyer G, et al. Predicting student performance:an application of data mining methods with an educational Web-based system[C] //Proc of ASEE/IEEE Frontiers in Education Conference. 2003:T2A-13.
[49] Chu K, Chang M, Hsia Y. Designing a course recommendation system on Web based on the students’course selection records[C] //Proc of World Conference on Educational Multimedia, Hypermedia and Telecommunications. 2003:14-21.
[50] Lu J. A personalized e-learning material recommender system[C] //Proc of International Conference on Information Technology for Application. 2004:374-379.
[51] Teng Chaiwen, Lin C, Cheng S, et al. Analyzing user behavior distribution on e-learning platform with techniques of clustering[C] //Proc of Society for Information Technology & Teacher Education International Conference. Chesapeake, VA:AACE, 2004:3052-3058.
[52] Sarrafzadeh A, Atabay H A, Pedram M M, et al. ReliefF based feature selection in content-based image retrieval[C] //Proc of International Multi Conference of Engineers and Computer Scientists. 2012:19-22.
[53] Lu Xinguo, Peng Xianghua, Liu Ping, et al. A novel feature selection method based on CFS in cancer recognition[C] //Proc of IEEE International Conference on Systems Biology. Washington DC:IEEE Computer Society, 2012:226-231.
[54] Li Biqing, Hu Lele, Chen Lei, et al. Prediction of protein domain with mRMR feature selection and analysis[J] . PLoS One, 2012, 7(6):e39308.
[55] 阮晓钢, 武璇. 斯金纳自动机:形成操作性条件反射理论的心理学模型[J] . 中国科学:技术科学, 2013, 43(12):1374-1390.
[56] 李俊霞. 布鲁纳的认知—发现说在成人教学中的应用[J] . 成人教育, 2003(11):3-5.
[57] 吕雪晴, 王华清, 刘满芝. 基于建构主义学习理论的网络教学模式构建[J] . 教学与管理, 2006(2):77-78.
[58] 韩亚梅. 奥苏贝尔学习教学理论及其对教学实践的启示[J] . 陕西广播电视大学学报, 2008, 10(3):29-32.
[59] 于连科. 学习动机理论在远程教育中的应用[J] . 现代远距离教育, 2009(3):16-20.
收稿日期 2017/4/17
修回日期 2017/6/8
页码 1287-1293
中图分类号 TP391
文献标志码 A