《计算机应用研究》|Application Research of Computers

人工蜂群算法研究综述

Survey on artificial bee colony algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 何尧,刘建华,杨荣华
机构 福建工程学院 信息科学与工程学院,福州 350118
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)05-1281-06
DOI 10.3969/j.issn.1001-3695.2018.05.001
摘要 介绍了2013年以来国内外蜂群算法的研究成果,包括加快收敛、提高开采能力、提高算法性能方面的改进;针对约束优化、平行化运行、多目标寻优等多方面的研究,以及人工蜂群算法在神经网络、无线传感网、决策调度、图像信号处理等多个领域的研究现状,并指出人工蜂群算法有待进一步解决的问题及未来的研究方向。
关键词 人工蜂群算法;群智能;多目标优化;约束优化
基金项目 福建省科技厅引导性项目(2017H0001)
福建省教育厅科研资助项目(JA15356)
本文URL http://www.arocmag.com/article/01-2018-05-001.html
英文标题 Survey on artificial bee colony algorithm
作者英文名 He Yao, Liu Jianhua, Yang Ronghua
机构英文名 CollegeofInformationScience&Engineering,FujianUniversityofTechnology,Fuzhou350118,China
英文摘要 This paper reviewed research achievements and application status of ABC at home and abroad since 2013, it included the improvement about accelerating the convergence, strengthening the exploitation ability, improving the performance of ABC, the research progress on constrained optimization, parallel operation, multi-objective optimization; and applications in the fields of neural network, wireless sensor network, scheduling problem, image signal processing area. Finally it proposed se-veral unsolved issues and further research directions of ABC.
英文关键词 artificial bee colony(ABC) algorithm; swarm intelligence; multi-objective optimization; constrained optimization
参考文献 查看稿件参考文献
  [1] Karaboga D. An idea based on honey bee swarm for numerical optimization, TR06[R] . Kayseri, Turkey:Erciyes University, 2005.
[2] Karaboga D, Gorkemli B, Ozturk C, et al. A comprehensive survey:artificial bee colony (ABC) algorithm and applications[J] . Artificial Intelligence Review, 2014, 42(1):21-57.
[3] 秦全德, 程适, 李丽, 等. 人工蜂群算法研究综述[J] . 智能系统学报, 2014, 9(2):127-135.
[4] 霍凤财, 杜颖, 刘洋. 人工蜂群算法及其应用[J] . 吉林大学学报:信息科学版, 2016, 34(4):468-476.
[5] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence:from natural to artificial systems[M] . New York:Oxford University Press, 1999.
[6] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J] . Applied Mathematics and Computation, 2009, 214(1):108-132.
[7] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm[J] . Applied Soft Computing, 2008, 8(1):687-697.
[8] Akay B, Karaboga D. Parameter tuning for the artificial bee colony algorithm[C] //Proc of International Conference on Computational Collective Intelligence. Berlin:Springer, 2009:608-619.
[9] 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J] . 控制与决策, 2013, 28(10):1554-1558.
[10] Karaboga D, Basturk B. A powerful and efficient algorithm for numeri-cal function optimization:artificial bee colony (ABC) algorithm[J] . Journal of Global Optimization, 2007, 39(3):459-471.
[11] Krishnanand K R, Nayak S K, Panigrahi B K, et al. Comparative study of five bio-inspired evolutionary optimization techniques[C] //Proc of World Congress on Nature & Biologically Inspired Computing. Piscataway, NJ:IEEE Press, 2009:1231-1236.
[12] Mala D J, Kamalapriya M, Shobana R, et al. A non-pheromone based intelligent swarm optimization technique in software test suite optimization[C] //Proc of International Conference on Intelligent Agent & Multi-Agent System. Piscataway, NJ:IEEE Press, 2009:1-5.
[13] Karaboga D, Akay B. Artificial bee colony (ABC) , harmony search and bees algorithms on numerical optimization[C] //Proc of Innovative Production Machines and Systems Virtual Conference. 2009.
[14] Li Huazhe, Liu Kunqi, Li Xia. A comparative study of artificial bee colony, bees algorithms and differential evolution on numerical benchmark problems[C] //Proc of International Symposium on Intelligence Computation and Applications. Berlin:Springer, 2010:198-207.
[15] Chu S C, Huang H C, Roddick J F, et al. Overview of algorithms for swarm intelligence[C] //Proc of International Conference on Computational Collective Intelligence. Berlin:Springer, 2011:28-41.
[16] Civicioglu P, Besdok E. A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms[J] . Artificial Intelligence Review, 2013, 39(4):315-346.
[17] Zhu Guopu, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J] . Applied Mathematics and Computation, 2010, 217(7):3166-3173.
[18] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J] . Information Sciences, 2012, 192(1):120-142.
[19] Kiran M S, Finndik O. A directed artificial bee colony algorithm[J] . Applied Soft Computing, 2015, 26(1):454-462.
[20] Karaboga D, Gorkemli B. A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J] . Applied Soft Computing, 2014, 23(10):227-238.
[21] Loubière P, Jourdan A, Siarry P, et al. A sensitivity analysis method for driving the artificial bee colony algorithm’s search process[J] . Applied Soft Computing, 2016, 41(4):515-531.
[22] Morris M D. Factorial sampling plans for preliminary computational experiments[J] . Technometrics, 1991, 33(2):161-174.
[23] 周新宇, 吴志健, 邓长寿, 等. 一种邻域搜索的人工蜂群算法[J] . 中南大学学报:自然科学版, 2015, 46(2):534-546.
[24] 李彦苍, 彭扬. 基于信息熵的改进人工蜂群算法[J] . 控制与决策, 2015, 30(6):1121-1125.
[25] 刘三阳, 张平, 朱明敏. 基于局部搜索的人工蜂群算法[J] . 控制与决策, 2014, 29(1):123-128.
[26] Xiang Wanli, An Meiqing. An efficient and robust artificial bee colony algorithm for numerical optimization[J] . Computers & Operations Research, 2013, 40(5):1256-1265.
[27] Aydin D, Liao T, De Oca M A M, et al. Improving performance via population growth and local search:the case of the artificial bee colony algorithm[C] //Proc of International Conference on Artificial Evolution (Evolution Artificielle). Berlin:Springer, 2011:85-96.
[28] Aydin D, zyn S, Yasar C, et al. Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem[J] . International Journal of Electrical Power & Energy Systems, 2014, 54(1):144-153.
[29] 周新宇, 吴志健, 王明文. 基于正交实验设计的人工蜂群算法[J] . 软件学报, 2015, 26(9):2167-2190.
[30] Gao Weifeng, Liu Sanyang, Huang Lingling. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning[J] . IEEE Trans on Cybernetics, 2013, 43(3):1011.
[31] Ozturk C, Hancer E, Karaboga D. A novel binary artificial bee colony algorithm based on genetic operators[J] . Information Sciences, 2015, 297(5):154-170.
[32] Kefayat M, Ara A L, Niaki S A N. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources[J] . Energy Conversion and Management, 2015, 92(3):149-161.
[33] Li Yuancheng, Wang Yiliang, Li Bin. A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow[J] . International Journal of Electrical Power & Energy Systems, 2013, 52(1):25-33.
[34] Tuba M, Bacanin N. Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem[J] . Applied Mathematics & Information Scien-ces, 2014, 8(6):2831-2844.
[35] Yuan Xiaohui, Wang Pengtao, Yuan Yanbin, et al. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem[J] . Energy Conversion & Management, 2015, 100(8):1-9.
[36] Zhang Rui, Song Shiji, Wu Cheng. A hybrid artificial bee colony algorithm for the Job-Shop scheduling problem[J] . International Journal of Production Economics, 2013, 141(1):167-178.
[37] Rego C, Duarte R. A filter-and-fan approach to the Job-Shop scheduling problem[J] . European Journal of Operational Research, 2009, 194(3):650-662.
[38] Yildiz A R. A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing[J] . Applied Soft Computing, 2013, 13(5):2906-2912.
[39] Liu Yanfeng, Liu Sanyang. A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem[J] . Applied Soft Computing, 2013, 13(3):1459-1463.
[40] Nawaz M, Enscore E E, Ham I. A heuristic algorithm for the m-machine, n-job Flow-Shop sequencing problem[J] . Omega, 1983, 11(1):91-95.
[41] Tasgetiren M F, Pan Q K, Suganthan P N, et al. A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion[J] . Applied Mathematical Modelling, 2013, 37(10):6758-6779.
[42] Gao Weifeng, Liu Sanyang, Huang Lingling. A novel artificial bee colony algorithm with Powell’s method[J] . Applied Soft Computing, 2013, 13(9):3763-3775.
[43] Powell M J D. Restart procedures for the conjugate gradient method[J] . Mathematical Programming, 1977, 12(1):241-254.
[44] 匡芳君, 徐蔚鸿, 金忠. 自适应Tent混沌搜索的人工蜂群算法[J] . 控制理论与应用, 2014, 31(11):1502-1509.
[45] 苏宏升, 殷凯乐. 基于Nelder-Mead单纯形法的改进人工蜂群算法研究[J] . 计算机工程与应用, 2016, 52(24):50-56.
[46] 王生生, 杨娟娟, 柴胜. 基于混沌鲶鱼效应的人工蜂群算法及应用[J] . 电子学报, 2014, 42(9):1731-1737.
[47] Bui D T, Tuan T A, Hoang N D, et al. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization[J] . Landslides, 2017, 14(2):447-458.
[48] Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems[C] //Proc of International Fuzzy Systems Association World Congress. Berlin:Springer, 2007:789-798.
[49] Deb K. An efficient constraint handling method for genetic algorithms[J] . Computer Methods in Applied Mechanics and Enginee-ring, 2000, 186(2):311-338.
[50] Tsai H C. Integrating the artificial bee colony and bees algorithm to face constrained optimization problems[J] . Information Sciences, 2014, 258(3):80-93.
[51] Kou Xiaoli, Liu Sanyang, Zhang Jianke, et al. Co-evolutionary particle swarm optimization to solve constrained optimization problems[J] . Computers & Mathematics with Applications, 2009, 57(11):1776-1784.
[52] Li Xiangtao, Yin Minghao. Self-adaptive constrained artificial bee colony for constrained numerical optimization[J] . Neural Computing and Applications, 2014, 24(3-4):723-734.
[53] Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization[J] . Journal of Intelligent Manufacturing, 2012, 23(4):1001-1014.
[54] Brajevic I, Tuba M. An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems[J] . Journal of Intelligent Manufacturing, 2013, 24(4):729-740.
[55] Karaboga D, Aslan S. A new emigrant creation strategy for parallel artificial bee colony algorithm[C] //Proc of the 9th International Conference on Electrical and Electronics Engineering. 2015:689-694.
[56] Basturk A, Akay R. Performance analysis of the coarse-grained parallel model of the artificial bee colony algorithm[J] . Information Scie-nces, 2013, 253(11):34-55.
[57] Gabriel E, Fagg G E, Bosilca G, et al. Open MPI:goals, concept, and design of a next generation MPI implementation[C] //Proc of European Parallel Virtual Machine/Message Passing Interface Users’Group Meeting. Berlin:Springer, 2004:97-104.
[58] Asadzadeh L. A parallel artificial bee colony algorithm for the Job-Shop scheduling problem with a dynamic migration strategy[J] . Computers & Industrial Engineering, 2016, 102:359-367.
[59] Adaryani M R, Karami A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem[J] . International Journal of Electrical Power & Energy Systems, 2013, 53(1):219-230.
[60] Khorsandi A, Hosseinian S H, Ghazanfari A. Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem[J] . Electric Power Systems Research, 2013, 95(2):206-213.
[61] Zhou Jianzhong, Liao Xiang, Ouyang Shuo, et al. Multi-objective artificial bee colony algorithm for short-term scheduling of hydrothermal system[J] . International Journal of Electrical Power & Energy Systems, 2014, 55(2):542-553.
[62] Hancer E, Xue Bing, Zhang Mengjie, et al. A multi-objective artificial bee colony approach to feature selection using fuzzy mutual information[C] //Proc of IEEE Congress on Evolutionary Computation. 2015:2420-2427.
[63] Li Junqing, Pan Quanke, Tasgetiren M F. A discrete artificial bee colony algorithm for the multi-objective flexible Job-Shop scheduling problem with maintenance activities[J] . Applied Mathematical Modelling, 2014, 38(3):1111-1132.
[64] Yahya M, Saka M P. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights[J] . Automation in Construction, 2014, 38(3):14-29.
[65] Yu Jiaqian, Duan Haibin. Artificial bee colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion[J] . Optik:International Journal for Light and Electron Optics, 2013, 124(17):3103-3111.
[66] Awan S M, Aslam M, Khan Z A, et al. An efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecasting[J] . Neural Computing and Applications, 2014, 25(7-8):1967-1978.
[67] Karaboga D, Kaya E. An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training[J] . Applied Soft Computing, 2016, 49(12):423-436.
[68] Uzlu E, Akpinar A, zturk H T, et al. Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey[J] . Energy, 2014, 69(5):638-647.
[69] Menon N, Ramakrishnan R. Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering[C] //Proc of International Conference on Communications and Signal Processing. Mewlmaruvathur, India:IEEE Press, 2015:6-9.
[70] Mini S, Udgata S K, Sabat S L. Sensor deployment and scheduling for target coverage problem in wireless sensor networks[J] . IEEE Sensors Journal, 2014, 14(3):636-644.
[71] Dao T K, Pan T S, Nguyen T T, et al. A compact artificial bee colony optimization for topology control scheme in wireless sensor networks[J] . Journal of Information Hiding and Multimedia Signal Processing, 2015, 6(2):297-310
[72] Chang Weilun, Zeng Deze, Chen Rungching, et al. An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks[J] . International Journal of Machine Learning and Cybernetics, 2015, 6(3):375-383.
[73] Hashim H A, Ayinde B O, Abido M A. Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm[J] . Journal of Network and Computer Applications, 2016, 64(4):239-248.
[74] Ince Y, Karabulut K, Tasgetiren M F, et al. A discrete artificial bee colony algorithm for the permutation flowshop scheduling problem with sequence-dependent setup times[C] //Proc of IEEE Congress on Evolutionary Computation. 2016:3401-3408.
[75] Pan Quanke, Wang Ling, Li Junqing, et al. A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation[J] . Omega, 2014, 45(2):42-56.
[76] Alvarado-Iniesta A, Garcia-Alcaraz J L, Rodriguez-Borbon M I, et al. Optimization of the material flow in a manufacturing plant by use of artificial bee colony algorithm[J] . Expert Systems with Applications, 2013, 40(12):4785-4790.
[77] Goel S, Singh J, Ojha N. Intelligent aircraft landing decision support system using artificial bee colony[C] //Proc of the 3rd International Conference on Computing for Sustainable Global Development. Pisca-taway, NJ:IEEE Press, 2016:2412-2416.
[78] Ng K K H, Lee C K M. Makespan minimization in aircraft landing problem under congested traffic situation using modified artificial bee colony algorithm[C] //Proc of IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway, NJ:IEEE Press, 2016:750-754.
[79] Yao Baozhen, Hu Ping, Zhang Mingheng, et al. Artificial bee colony algorithm with scanning strategy for the periodic vehicle routing problem[J] . Simulation, 2013, 89(6):762-770.
[80] Secui D C. A new modified artificial bee colony algorithm for the economic dispatch problem[J] . Energy Conversion & Management, 2015, 89(1):43-62.
[81] Jadhav H T, Roy R. Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power[J] . Expert Systems with Applications, 2013, 40(16):6385-6399.
[82] Shayeghi H, Ghasemi A. A modified artificial bee colony based on chaos theory for solving non-convex emission/economic dispatch[J] . Energy Conversion and Management, 2014, 79(3):344-354.
[83] AydiN D A, ZyN S. Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search[J] . Applied Soft Computing, 2013, 13(5):2456-2466.
[84] Liao Xiang, Zhou Jianzhong, Shuo Ouyang, et al. An adaptive chao-tic artificial bee colony algorithm for short-term hydrothermal generation scheduling[J] . International Journal of Electrical Power & Energy Systems, 2013, 53(1):34-42.
[85] Hancer E, Ozturk C, Karaboga D. Extraction of brain tumors from MRI images with artificial bee colony based segmentation methodology[C] //Proc of the 8th International Conference on Electrical and Electronics Engineering. Piscataway, NJ:IEEE Press, 2013:516-520.
[86] Bhandari A K, Kumar A, Singh G K. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions[J] . Expert Systems with Applications, 2015, 42(3):1573-1601.
[87] Woz'niak M, Polap D, Gabryel M, et al. Can we process 2D images using artificial bee colony?[C] //Proc of International Conference on Artificial Intelligence and Soft Computing. Berlin:Springer International Publishing, 2015:660-671.
[88] Ali M, Ahn C W, Pant M, et al. An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony[J] . Information Sciences, 2015, 301(4):44-60.
[89] Draa A, Bouaziz A. An artificial bee colony algorithm for image contrast enhancement[J] . Swarm & Evolutionary Computation, 2014, 16(6):69-84.
[90] Deriche R, Fizazi H. The artificial bee colony algorithm for unsupervised classification of meteorological satellite images[J] . Internatio-nal Journal of Computer Applications, 2015, 112(12):28-32.
[91] Karaboga N, Latifoglu F. Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm[J] . Engineering Applications of Artificial Intelligence, 2013, 26(2):677-684.
[92] Bose D, Biswas S, Vasilakos A V, et al. Optimal filter design using an improved artificial bee colony algorithm[J] . Information Scien-ces, 2014, 281(10):443-461.
[93] Li Bai, Li Ya, Gong Ligang. Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model[J] . Engineering Applications of Artificial Intelligence, 2014, 27(1):70-79.
[94] Apalak M K, Karaboga D, Akay B. The artificial bee colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates[J] . Engineering Optimization, 2014, 46(3):420-437.
[95] Zhang Wei, Wang Ning, Yang Shipin. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell[J] . International Journal of Hydrogen Energy, 2013, 38(14):5796-5806.
[96] Ozturk C, Hancer E, Karaboga D. Dynamic clustering with improved binary artificial bee colony algorithm[J] . Applied Soft Computing, 2015, 28(3):69-80.
[97] 朱冰莲, 朱方方, 段青言, 等. 采用多策略离散人工蜂群的改进频谱分配算法[J] . 西安交通大学学报, 2016, 50(2):20-25, 84.
[98] El-Fergany A A, Abdelaziz A Y. Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-based approach[J] . International Journal of Electrical Power & Energy Systems, 2014, 54(1):235-243.
[99] Sundareswaran K, Sankar P, Nayak P S R, et al. Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony[J] . IEEE Trans on Sustainable Energy, 2015, 6(1):198-209.
[100] Karaboga D, Ozturk C, Karaboga N, et al. Artificial bee colony programming for symbolic regression[J] . Information Sciences, 2012, 209(11):1-15.
收稿日期 2017/3/15
修回日期 2017/4/26
页码 1281-1286
中图分类号 TP301.6
文献标志码 A