《计算机应用研究》|Application Research of Computers

基于兴趣感知和时间因子的个性化菜品推荐

Preference-aware and time factor based personalized dish recommendation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 范顺忠,陈浩
机构 湖南大学 信息科学与工程学院,长沙 410082
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)02-0358-04
DOI 10.3969/j.issn.1001-3695.2018.02.009
摘要 目前推荐系统已广泛应用在各种电子商务网站上,但针对菜品的个性化推荐很少。针对菜品推荐中存在别名多、用户菜品矩阵稀疏以及新用户冷启动等难题,对基于用户的协同过滤算法进行改进,设计一种融合专家选择和在线推荐的菜品推荐系统。专家选择通过对菜品进行种类层次划分为用户兴趣建模做准备,在线推荐通过兴趣感知选择算法选择餐厅中的专家用户和候选菜品,从而实现对用户菜品的推荐。最后通过在候选菜品选择时引入时间敏感因子和协同过滤中引入时间遗忘因子,改进兴趣感知算法和菜品偏好预测效果。实验结果表明,所设计算法较传统算法在准确性和推荐效率上有明显改进,并得出了针对菜品推荐时引入时间因子有利提高推荐准确性的结论。
关键词 推荐系统;个性化菜品推荐;兴趣感知;时间因子;菜品层级分类
基金项目 国家自然科学基金资助项目(61472132,61472131)
湖南省自然科学基金资助项目(2015JJ2027)
本文URL http://www.arocmag.com/article/01-2018-02-009.html
英文标题 Preference-aware and time factor based personalized dish recommendation
作者英文名 Fan Shunzhong, Chen Hao
机构英文名 CollegeofComputerScience&ElectronicEngineering,HunanUniversity,Changsha410082,China
英文摘要 Currently, recommendation systems were widely used in a variety of e-commerce sites, but few were for personalized dish recommendations.Focusing on dish recommendation problems of multiple aliases, sparse user-dish matrix and cold start of new users, this paper improved the traditional user-based collaborative filtering algorithm and designed a dish recommendation system that combined expert selection and online recommendation.The expert selection made preparations for user interest model by classifying dish categories, online recommendation selected expert users and candidate dishes at restaurant by using preference-aware selection algorithm, which realized personalized dish recommendations for users.Consequently, by introducing the time-dependent factor in dish selection and the time-forgetting factor in the collaborative filtering, it improved preference-aware selection algorithm and dish preference prediction performance.The experimental results show that the proposed algorithm improves significantly the accuracy and recommendation efficiency than the traditional one, and it concludes that the introduction of time factor is beneficial to improve the accuracy of dish recommendation.
英文关键词 recommendation system; personalized dish recommendation; preference-aware; time factor; dish hierarchical classification
参考文献 查看稿件参考文献
  [1] Francesco R, Lior R, Bracha S, et al. Recommender systems handbook[M] . New York:Springer, 2011:1-833.
[2] 孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J] . 软件学报, 2013, 24(11):2721-2733.
[3] 王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J] . 电子与信息学报, 2013, 35(10):2391-2396.
[4] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J] . 软件学报, 2012, 23(1):1-20.
[5] Ling Guang, Lyu M R, King I. Ratings meet reviews, a combined approach to recommend[C] // Proc of the 8th ACM Conference on Recommender Systems. 2014:105-112.
[6] Zhu Qing, Zhou Mengxi, Liang Jingfan, et al. Efficient promotion algorithm by exploring group preference in recommendation[C] //Proc of IEEE International Conference on Web Services. Washington DC:IEEE Computer Society, 2016:268-275.
[7] 赵雪美, 郭林锋, 卞雪雯. 一种新的融合情景的美食推荐算法[J] . 计算机与现代化, 2015(7):20-24.
[8] 陈婷婷. 融合上下文和项目属性的美食商店信息推荐算法研究与实现[D] . 北京:北京邮电大学, 2014.
[9] 欧阳跃祁. 一种基于用户隐式反馈的美食推荐算法研究[D] . 长沙:湖南大学, 2013.
[10] Ge Mouzhi, Elahi M, Massimo D, et al. Using tags and latent factors in a food recommender system[C] //Proc of International Conference on Digital Health. 2015:105-112.
[11] Bao Jie, Zheng Yu, Mokbel M F. Location-based and preference-aware recommendation using sparse geo-social networking data[C] //Proc of International Conference on Advances in Geographic Information Systems. 2012:199-208.
[12] 甘早斌, 曾灿, 马尧, 等. 基于信任网络的C2C电子商务信任算法[J] . 软件学报, 2015, 26(8):1946-1959.
[13] Kleinberg J M. Authoritative sources in a hyperlinked environment[J] . Journal of the ACM, 1999, 46(5):604-632.
[14] 许斐. 基于时间因子的动态推荐算法研究[D] . 武汉:中南民族大学, 2013.
[15] 孙光辉. 基于时间效应和用户兴趣变化的改进推荐算法研究[D] . 北京:北京邮电大学, 2014.
[16] 于洪, 李转运. 基于遗忘曲线的协同过滤推荐算法[J] . 南京大学学报:自然科学版, 2010, 46(5):520-527.
[17] 王玉祥, 乔秀全, 李晓峰, 等. 上下文感知的移动社交网络服务选择机制研究[J] . 计算机学报, 2010, 33(11):2126-2135.
[18] Tian Gang, Wang Jian, He Keqing, et al. Time-aware Web service recommendations using implicit feedback[C] //Proc of IEEE International Conference on Web Services. 2014:273-280.
收稿日期 2016/10/19
修回日期 2016/12/21
页码 358-361,371
中图分类号 TP301.6
文献标志码 A