《计算机应用研究》|Application Research of Computers

网络功能虚拟化资源配置及优化研究综述

Survey on NFV resource allocation and optimization

免费全文下载 (已被下载 次)  
获取PDF全文
作者 邵维专,吕光宏
机构 四川大学 计算机学院,成都 610065
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)02-0321-06
DOI 10.3969/j.issn.1001-3695.2018.02.001
摘要 网络功能虚拟化(network functions virtualization,NFV)利用虚拟化技术将网络功能从专用硬件中分离形成虚拟网络功能,然后把虚拟网络功能映射到通用服务器、交换机或者存储器中,能有效地降低网络投资成本和运营成本,并提高网络服务部署的灵活性。网络功能虚拟化资源配置是实施NFV需要解决的一个关键问题。为深入剖析网络功能虚拟化资源配置,介绍了NFV的体系结构,重点阐述了资源配置的三个阶段及资源配置的优化,最后对高效资源配置面临的挑战和有价值的研究方向进行了思考,为NFV的研究提供参考。
关键词 网络功能虚拟化;虚拟网络功能;软件定义网络;资源配置;优化
基金项目 国家“863”计划资助项目(2008AA01Z105)
本文URL http://www.arocmag.com/article/01-2018-02-001.html
英文标题 Survey on NFV resource allocation and optimization
作者英文名 Shao Weizhuan, Lyu Guanghong
机构英文名 CollegeofComputerScience,SichuanUniversity,Chengdu610065,China
英文摘要 Network functions virtualization(NFV) utilizes virtualization technology to separate network functions from dedicated hardware into virtual network functions, and then maps virtual network functions to general-purpose servers, switches or storage.NFV has the potential to lead to significant reductions in capital expenditure(CAPEX) and operating expense (OPEX) and improve the flexibility of the deployment of network services.One of the key problems that need to be addressed to implement NFV is NFV resource allocation.In order to deeply analyze NFV resource allocation, this paper introduced the architecture of NFV, focused on the three stages of resource allocation and optimization of resource allocation.Finally, the challenges and the valuable directions of efficient resource allocation were also thought as references for the research of NFV.
英文关键词 network functions virtualization; virtual network function; software-defined networking; resource allocation; optimization
参考文献 查看稿件参考文献
  [1] Xu Zhifeng, Liu Fangming, Wang Tao, et al. Demystifying the energy efficiency of network function virtualization[C] //Proc of the 24th International Symposium on Quality of Service. [S. l. ] :IEEE Press, 2016:1-10.
[2] Wu Jun, Zhang Zhifeng, Hong Yu, et al. Cloud radio access network(C-RAN):a primer[J] . IEEE Network, 2015, 29(1):35-41.
[3] Uhlig R, Neiger G, Rodgers D, et al. Intel virtualization technology[J] . Computer, 2005, 38(5):48-56.
[4] Han Bo, Gopalakrishnan V, Ji Lusheng, et al. Network function virtualization:challenges and opportunities for innovations[J] . IEEE Communications Magazine, 2015, 53(2):90-97.
[5] Kreutz D, Ramos F M V, Verissimo P E, et al. Software-defined networking:a comprehensive survey[J] . Proceedings of the IEEE, 2015, 103(1):14-76.
[6] Wood T, Ramakrishnan K K, Hwang J, et al. Toward a software-based network:integrating software defined networking and network function virtualization[J] . IEEE Network, 2015, 29(3):36-41.
[7] Duan Qiang, Ansari N, Toy M. Software-defined network virtualization:an architectural framework for integrating SDN and NFV for service provisioning in future networks[J] . IEEE Network, 2016, 30(5):10-16.
[8] NGMN. 5G white paper[EB/OL] . [2016-12-30] . http://www. ngmn. org/5g-white-paper. html.
[9] Herrera J G, Botero J F. Resource allocation in NFV:a comprehensive survey[J] . IEEE Trans on Network and Service Management, 2016, 13(3):518-532.
[10] Mijumbi R, Serrat J, Gorricho J L, et al. Network function virtualization:state-of-the-art and research challenges[J] . IEEE Communications Surveys & Tutorials, 2016, 18(1):10-16.
[11] Soares J, Goncalves C, Parreira B, et al. Toward a telco cloud environment for service functions[J] . IEEE Communications Magazine, 2015, 53(2):98-106.
[12] SdxCentral. What is NFV MANO[EB/OL] . [2016-12-29] . https://www. sdxcentral. com/nfv/definitions/nfv-mano/.
[13] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow:enabling innovation in campus networks[J] . ACM SIGCOMM Computer Communication Review, 2008, 38(2):69-74.
[14] Matias J, Garay J, Toledo N, et al. Toward an SDN-enabled NFV architecture[J] . IEEE Communications Magazine, 2015, 53(4):187-193.
[15] Callegati F, Cerroni W, Contoli C, et al. SDN for dynamic NFV deployment[J] . IEEE Communications Magazine, 2016, 54(10):89-95.
[16] Volvach L, Globa L. Mobile networks disaster recovery using SDN-NFV[C] //Proc of International Conference Radio Electronics & Info Communications. [S. l. ] :IEEE Press, 2016:1-3.
[17] Fischer A, Botero J F, Beck M T, et al. Virtual network embedding:a survey[J] . IEEE Communications Surveys and Tutorials, 2013, 15(4):1888-1906.
[18] Chowdhury M, Rahman M R, Boutaba R. ViNEYard:virtual network embedding algorithms with coordinated node and link mapping[J] . IEEE/ACM Trans on Networking, 2012, 20(1):206-219.
[19] 谢政. 网络最优化[M] . 北京:科学出版社, 2014.
[20] 程祥, 张忠宝, 苏森, 等. 虚拟网络映射问题研究综述[J] . 通信学报, 2011, 32(10):143-151.
[21] 李小玲, 王怀民, 丁博, 等. 虚拟网络映射问题研究及其进展[J] . 软件学报, 2012, 23(11):3009-3028.
[22] Fischer A, Botero J F, Duelli M, et al. ALEVIN:a framework to develop, compare, and analyze virtual network embedding algorithms[J] . Electronic Communications of the EASST, 2011, 37(1):1-12.
[23] Mehraghdam S, Keller M, Karl H. Specifying and placing chains of virtual network functions[C] //Proc of the 3rd IEEE International Conference on Cloud Networking. [S. l. ] :IEEE Press, 2014:7-13.
[24] Beck M T, Botero J F. Coordinated allocation of service function chains[C] //Proc of IEEE Global Communications Conference. [S. l. ] :IEEE Press, 2015:1-6.
[25] Riera J F, Hesselbach X, Escalona E, et al. On the complex scheduling formulation of virtual network functions over optical networks[C] //Proc of the 16th International Conference on Transparent Optical Networks. [S. l. ] :IEEE Press, 2014:1-5.
[26] Riera J F, Escalona E, Batalle J, et al. Virtual network function scheduling:concept and challenges[C] //Proc of International Conference on Smart Communications in Network Technologies. [S. l. ] :IEEE Press, 2014:1-5.
[27] Mijumbi R, Serrat J, Corricho J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C] //Proc of the 1st IEEE Conference on Network Softwarization. [S. l. ] :IEEE Press, 2015:1-9.
[28] Wang Luhan, Lu Zhaoming, Wen Xiangming, et al. Joint optimization of service function chaining and resource allocation in network function virtualization[J] . IEEE Access, 2016, 4(99):8080-8094.
[29] Luizelli M C, Bays L R, Buriol L S, et al. Piecing together the NFV provisioning puzzle:efficient placement and chaining of virtual network functions[C] //Proc of IFIP/IEEE International Symposium on Integrated Network Management. [S. l. ] :IEEE Press, 2015:98-106.
[30] Pham T M, Pham L M. Load balancing using multipath routing in network functions virtualization[C] //Proc of IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future. [S. l. ] :IEEE Press, 2016:85-90.
[31] Qu Long, Assi C, Shaban K. Delay-aware scheduling and resource optimization with network function virtualization[J] . IEEE Trans on Communications, 2016, 64(9):3746-3758.
[32] Moens H, Turck F D. VNF-P:a model for efficient placement of virtualized network functions[C] //Proc of the 10th International Conference on Network and Service Management and Workshop. [S. l. ] :IEEE Press, 2014:418-423.
[33] Gupta A, Habib M F, Chowdhury P, et al. On service chaining using virtual network functions in network enabled cloud systems[C] //Proc of IEEE International Conference on Advanced Networks and Telecommunications Systems. [S. l. ] :IEEE Press, 2015:1-3.
[34] Riggio R, Rasheed T, Narayanan R. Virtual network functions orchestration in enterprise WLANs[C] //Proc of IFIP/IEEE International Symposium on Integrated Network Management. [S. l. ] :IEEE Press, 2015:1220-1225.
[35] VNREAL. ALEVIN-algorithms for embedding virtual networks[EB/OL] . [2016-12-30] . https://sourceforge. net/p/alevin/wiki/home/.
收稿日期 2017/1/8
修回日期 2017/3/10
页码 321-326
中图分类号 TP393.07
文献标志码 A