《计算机应用研究》|Application Research of Computers

基于时频分析的海杂波背景下舰船目标检测

Ship target detection under sea clutter background based on time-frequency analysis

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李庆忠,周祥振,黎明,牛炯
机构 中国海洋大学 工程学院 山东省海洋工程重点实验室,山东 青岛 266100
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)01-0052-04
DOI 10.3969/j.issn.1001-3695.2018.01.010
摘要 为了克服基于小波尺度谱重排的时频分析方法中时、频分辨率不佳及时频分布可读性较差等问题,提出了一种基于参数优化Morlet小波变换和奇异值分解的海杂波背景下舰船目标检测算法。算法利用Shannon小波熵作为目标函数,根据高频地波雷达信号的特点自适应地优化Morlet小波变换的时间带宽积参数,使得后续重排尺度谱的时、频分辨率同时达到最佳;然后再对重排小波尺度谱进行基于奇异值分解的降噪处理,以抑制环境噪声的影响,进一步提高时频分布的可读性。实验结果表明,与传统的时频分析算法相比,提出的算法具有更好的时频聚集性和较强的噪声抑制能力,能有效地检测海杂波背景下缓慢运动的匀速和匀加速舰船目标。
关键词 时频分析;海杂波背景;重排小波尺度谱;奇异值分解;高频地波雷达;目标检测
基金项目 国家自然科学基金资助项目(61132005)
海洋公益性行业科研专项资助项目(201505002)
本文URL http://www.arocmag.com/article/01-2018-01-010.html
英文标题 Ship target detection under sea clutter background based on time-frequency analysis
作者英文名 Li Qingzhong, Zhou Xiangzhen, Li Ming, Niu Jiong
机构英文名 ShandongProvincialKeyLaboratoryofOceanEngineering,CollegeofEngineering,OceanUniversityofChina,QingdaoShandong266100,China
英文摘要 In order to overcome the problems of poor time-frequency resolution and inadequate readability of time-frequency distribution in the reassigned wavelet scalogram based method of time frequency analysis, this paper presented a new algorithm for ship target detection under sea clutter background based on parameter optimized Morlet wavelet transform and singular value decomposition(SVD). Firstly, according to the signal characteristic of high frequency surface wave radar (HFSWR), the time-bandwidth product (TBP) of Morlet wavelet basis was adaptively optimized by using Shannon entropy as an objective function, thus allowing both the time resolution and the frequency resolution of the subsequent reassigned wavelet scalogram to be optimal simultaneously. Then, singular value decomposition based de-noising was applied to the reassigned wavelet scalogram to reduce the interference influence of environmental noises and improve the readability of time-frequency distribution. The experimental results show that the proposed algorithm has better time-frequency concentration and better noise restraining ability than those of traditional time-frequency analysis algorithms, which can effectively detect the slow-moving ship targets at constant speed or at constant acceleration under strong sea clutter background.
英文关键词 time-frequency analysis; sea clutter background; reassigned wavelet scalogram; singular value decomposition(SVD); high frequency surface wave radar(HFSWR); target detection
参考文献 查看稿件参考文献
  [1] 雷志勇, 文必洋, 彭念, 等. 基于恒虚警的高频地波雷达低速目标检测研究[J] . 电波科学学报, 2007, 22(5):774-778.
[2] Jan O H, Martin H, Udo Z, et al. Presegmentation-based adaptive CFAR detection for HFSWR[C] //Proc of IEEE National Radar Conference. 2012:665-670.
[3] 梁建. 高频地波雷达目标二维CFAR检测及软件实现[D] . 青岛:中国海洋大学, 2014.
[4] 严俊坤, 刘红亮, 戴奉周, 等. 一种具有恒虚警性质的检测跟踪联合处理算法[J] . 电子与信息学报, 2014, 36(11):2666-2671.
[5] 王雨阳, 魏明珠, 徐修峰. 基于实际采集海杂波数据的雷达恒虚警检测方法分析[J] . 雷达与对抗, 2016, 36(1):27-31.
[6] Chen Xiaolong, Guan Jian, Bao Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J] . IEEE Trans on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
[7] 陈小龙, 刘宁波, 王国庆, 等. 基于高斯短时分数阶Fourier变换的海面微动目标检测方法[J] . 电子学报, 2014, 42(5):971-977.
[8] 田玉芳, 姬光荣, 尹志盈, 等. 基于FRFT域空间分形特征差异的海面弱目标检测[J] . 中国海洋大学学报, 2013, 43(3):92-97.
[9] 范一飞, 罗丰, 李明, 等. 海杂波AR谱多重分形特性及微弱目标检测方法[J] . 电子与信息学报, 2016, 38(2):455-463.
[10] 陈小龙, 刘宁波, 宋杰, 等. 海杂波FRFT域分形特征判别及动目标检测方法[J] . 电子与信息学报, 2011, 33(4):823-830.
[11] 奚刚, 肖春生. 基于时频分布的海杂波环境下目标检测[J] . 船舶电子工程, 2012, 32(8):77-79.
[12] 严颂华, 吴世才, 文必洋. 基于时频二维图像的高频雷达低速目标检测[J] . 电波科学学报, 2006, 21(3):391-396.
[13] 胡进峰, 李万阁, 艾慧, 等. 基于改进时频分析方法的天波雷达机动目标检测算法研究[J] . 电子与信息学报, 2015, 37(8):1843-1848.
[14] 黄小红, 贺夏, 辛玉林, 等. 基于时频特征的低分辨雷达微动多目标分辨方法[J] . 电子与信息学报, 2010, 32(10):2342-2347.
[15] 李庆忠, 李瑞芹, 黎明, 等. 基于时频分析的高频地波雷达目标检测算法[J] . 电波科学学报, 2015, 30(5):943-950.
[16] Lin Jing, Qu Liangsheng. Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis[J] . Journal of Sound and Vibration, 2000, 234(1):135-148.
[17] Li Ruixin, Wang Dongfeng, Han Pu, et al. On the applications of SVD in fault diagnosis[C] //Proc of IEEE International Conference on Systems, Man and Cybernetics. 2003:3763-3768.
收稿日期 2016/9/2
修回日期 2016/10/21
页码 52-55,61
中图分类号 TP391.4
文献标志码 A