《计算机应用研究》|Application Research of Computers

交通流多预期延迟模型与数值仿真

Multi-anticipation delay model for traffic flow and numerical simulation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 胡彦梅,马天山,陈建忠
机构 1.长安大学 a.经济与管理学院;b.理学院,西安 710064;2.西北工业大学 自动化学院,西安 710072
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)01-0048-04
DOI 10.3969/j.issn.1001-3695.2018.01.009
摘要 为了更准确地描述交通流,考虑驾驶员反应延迟时间和前车信息的非均衡使用,建立一种多预期延迟跟驰模型。线性稳定性分析表明,驾驶员反应延迟时间的增加会降低交通流的稳定性,多个前车信息的使用可以提高交通流的稳定性。数值仿真的结果表明,减少司机的反映延迟时间和适当地增加前车信息都能提高交通流的稳定性。为尽可能少地引入输入变量,不均衡地利用前车的车间距和速度差信息是必要的;理论和数值模拟的结果均表明驾驶员反应延迟在交通拥堵的形成过程中起着重要作用。
关键词 交通流;驾驶员反应延迟;多预期模型;稳定性分析;数值仿真
基金项目 国家自然科学基金资助项目(11102165,11772264)
陕西省自然科学基础研究计划资助项目(2015JM1013)
中央高校基本科研业务费专项资金资助项目(3102015ZY050)
本文URL http://www.arocmag.com/article/01-2018-01-009.html
英文标题 Multi-anticipation delay model for traffic flow and numerical simulation
作者英文名 Hu Yanmei, Ma Tianshan, Chen Jianzhong
机构英文名 1.a.SchoolofEconomics&Management,b.CollegeofScience,Chang'anUniversity,Xi'an710064,China;2.CollegeofAutomation,NorthwesternPolytechnicalUniversity,Xi'an710072,China
英文摘要 In order to describe the traffic flow more accurately, this paper proposed an extended multi-anticipation delayed car-following model by considering the reaction-time delay of drivers and using the unbalanced information of front vehicles. Linear stability analyses showed that increasing the reaction-time delay of drivers weakened the stability of traffic flow and appending the information of more vehicles ahead could enhance the stability. The results of numerical simulations demonstrate that decreasing the delay time or properly increasing the information from leading vehicles can promote the stability of traffic flow. It was necessary to unevenly use information of headways and velocity differences of front vehicles in order to introduce variables as little as possible. Both theoretical analysis and numerical simulations show that the reaction-time delay of drivers play an important role in the formation of traffic jams.
英文关键词 traffic flow; reaction-time delay of drivers; multi-anticipation model; stability analysis; numerical simulation
参考文献 查看稿件参考文献
  [1] Sipahi R, Niculescu S I. Deterministic time-delayed traffic flow mo-dels:a survey[M] //Complex Time-Delay Systems. Berlin:Sprin-ger, 2010:297-322.
[2] Davis L C. Modifications of the optimal velocity traffic model to include delay due to driver reaction time[J] . Physica A, 2003, 319(1):557-567.
[3] Green M. “How long does it take to stop?” methodological analysis of driver perception-brake times[J] . Transportation Human Factors, 2000, 2(3):95-216.
[4] Mehmood A, Easa S M. Modeling reaction time in car-following behaviour based on human factors[J] . International Journal of Applied Science, Engineering and Technology, 2009, 5(2):93-101.
[5] Bando M, Hasebe K, Nakanishi K, et al. Analysis of optimal velocity model with explicit delay[J] . Physical Review E, 1998, 58(5):5429-5435.
[6] Tordeux A, Lassarre S, Roussignol M. An adaptive time gap car-following model[J] . Transportation Research Part B, 2010, 44(8):1115-1131.
[7] Lassarre S, Roussignol M, Tordeux A. Linear stability analysis of first-order delayed car-following models on a ring[J] . Physical Review E, 2012, 86(3):036207.
[8] Yu Lei, Li Tong, Shi Zhongke. Density waves in a trafficc fow model with reaction-time delay[J] . Physica A, 2010, 389(13):2607-2616.
[9] Yu Lei, Shi Zhongke, Li Tong. A new car-following model with two delays[J] . Physics Letters A, 2014, 378(4):348-357.
[10] Bando M, Hasebe K, Nakayama A. Dynamical model of traffic congestion and numerical simulation[J] . Physical Review E, 1995, 51(2):1035-1042.
[11] Jiang Rui, Wu Qingsong, Zhu Zuojin. Full velocity difference model for a car-following theory[J] . Physical Review E, 2001, 64(1):017101.
[12] Nagatani T. Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction[J] . Physical Review E, 1999, 60(6):6395-6401.
[13] Wilson R E, Berg P, Hooper S, et al. Many-neighbour interaction and non-locality in traffic models[J] . The European Physical Journal B, 2004, 39(3):397-408.
[14] Ge Hongxia, Dai Shiqiang, Dong Liyun, et al. Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application[J] . Physical Review E, 2004, 70(6):066134.
[15] Ge Hongxia, Dai Shiqiang, Dong Liyun. An extended car-following model based on intelligent transportation system application[J] . Physica A, 2006, 365(2):543-548.
[16] 王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J] . 物理学报, 2006, 55(2):634-640.
[17] Jin Yanfei, Xu Meng, Gao Ziyou. KdV and kink-antikink solitons in an extended car-following model[J] . Journal of Computational and Nonlinear Dynamics, 2011, 6(1):011018.
[18] Peng Guganhan, Sun Dihua. Multiple car-following model of traffic flow and numerical simulation[J] . Chinese Physics B, 2009, 18(12):5420-11.
[19] Chen Jianzhong, Shi Zhongke, Hu Yanmei. Stabilization analysis of a multiple look-ahead model with driver reaction delays[J] . International Journal of Modern Physics C, 2012, 23(6):1250048.
[20] Lenz H, Wagner C K, Sollacher R. Multi-anticipative car-following model[J] . The European Physical Journal B, 1999, 7(2):331-335.
[21] Mo Yeliu, He Hongdi, Xue Yu, et al. Effect of multi-velocity-diffe-rence in traffic flow[J] . Chinese Physics B, 2008, 17(12):4446-4450.
[22] Hu Yanmei, Ma Tianshan, Chen Jianzhong. An extended multi-anticipative delay model of traffic flow[J] . Communications in Nonli-near Science and Numerical Simulation, 2014, 19(9):3128-3135.
[23] Helbing D, Tilch B. Generalized force model of traffic dynamics[J] . Physical Review E, 1998, 58(1):133-138.
收稿日期 2016/9/2
修回日期 2016/10/17
页码 48-51
中图分类号 TP391.9
文献标志码 A