《计算机应用研究》|Application Research of Computers

制造物联环境下智能仓库货位分配模型

Storage assignment model of intelligent warehouse in Internet of manufacturing things

免费全文下载 (已被下载 次)  
获取PDF全文
作者 彭小利,郑林江,蒲国林,王海涛
机构 1.四川文理学院 智能制造学院,四川 达州 635000;2.重庆大学 计算机学院,重庆 400030;3.达州智能制造产业技术研究院,四川 达州 635000
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2018)01-0024-07
DOI 10.3969/j.issn.1001-3695.2018.01.004
摘要 仓库货位合理规划与分配是减少产品存取时间、提高仓库作业效率的关键。在构建基于制造物联技术的智能仓库环境下,针对多品种智能仓库的货位分配问题,建立了考虑多规则约束的多目标智能仓库货位分配模型,提出了一种模型求解的改进遗传算法。实验表明,模型和算法能找到有效的仓库货位分配方案,验证了其有效性。
关键词 制造物联;智能仓库;货位分配;遗传算法
基金项目 国家自然科学基金资助项目(61203135)
国家“863”计划资助项目(2015AA015308)
中国博士后科学基金会资助项目(2014T70852)
基础研究经费中央高校资助项目(106112014CDJZR188801)
重庆市支持博士后科学基金项目(Xm201305)
四川省教育厅一般项目(15ZB0327,14ZB0307)
四川文理学院一般项目(2015TP002Y)
本文URL http://www.arocmag.com/article/01-2018-01-004.html
英文标题 Storage assignment model of intelligent warehouse in Internet of manufacturing things
作者英文名 Peng Xiaoli, Zheng Linjiang, Pu Guolin, Wang Haitao
机构英文名 1.SchoolofIntelligentManufacturing,SichuanUniversityofArts&Science,DazhouSichuan635000,China;2.CollegeofComputerScience,ChongqingUniversity,Chongqing400030,China;3.DazhouIndustrialTechnologyInstituteofIntelligentManufacturing,DazhouSichuan635000,China
英文摘要 Reasonable warehouse storage planning and assignment is the key technology to reduce the product storage and retrieve time and improve warehouse operation efficiency. In the intelligent warehouse environment which was developed based on the technology of Internet of manufacturing things, to solve the problem of storage assignment at intelligent multi-product warehouse, this paper proposed a multi-objective intelligent warehouse storage assignment model with many constrain rules. Then it developed an improved genetic algorithm to solve the model. Experimental results show that the proposed model and the improved genetic algorithm can produce effective storage assignment schemes, and verify the effectiveness of the model.
英文关键词 Internet of manufacturing things; intelligent warehouse; storage assignment; genetic algorithm(GA)
参考文献 查看稿件参考文献
  [1] Bortolini M, Botti L, Cascini A, et al. Unit-load storage assignment strategy for warehouses in seismic areas[J] . Computers & Industrial Engineering, 2015, 87(1):481-490.
[2] Xu Zhitao, Ming X G, Zhou Jingling, et al. Management optimisation based on dynamic SKU for RFID-enabled warehouse management in the steel supply chain[J] . International Journal of Production Research, 2013, 51(10):2981-2996.
[3] Leung K H, Choy K L, Tam M C, et al. A hybrid RFID case-based system for handling air cargo storage location assignment operations in distribution centers[C] //Proc of International Conference on Ma-nagement of Engineering and Technology. 2015:1859-1868.
[4] Wu Xiaoling, Fu Huawei, He Xiaomin, et al. Retrated:schedduling optimization of the RFID tagged explosive storage based on genetic algorithm[C] //Proc of the 8th International Conference on GPC. 2013:358-366.
[5] Tang Lin, Cao Hui, Zheng Li, et al. Value-driven uncertainty-aware data processing for an RFID-enabled mixed-model assembly line[J] . International Journal Production Economics, 2015, 165:273-281.
[6] Kuo R J, Kuo P H, Chen Y R, et al. Application of metaheuristics-based clustering algorithm to item assignment in a synchronized zone order picking system[J] . Applied Soft Computing, 2016, 46(C):143-150.
[7] Glock C H, Grosse E H. Storage policies and order picking strategies in U-shaped order-picking systems with a movable base[J] . International Journal of Production Ressearch, 2012, 50(16):4344-4357.
[8] Bottani E, Cecconi M, Vignali G, et al. Optimisation of storage allocation in order picking operations through a genetic algorithm[J] . International Journal of Logistics Research and Applications:A Leading Journal of Supply Chain Management, 2012, 15(2):127-146. [9] 蔡安江, 邢丽娟, 张华. 工业生产型立体仓库货位分配及优化[J] . 机械设计与制造, 2015, 34(10):264-267.
[10] 杨玮, 傅卫平, 王雯, 等. 基于多色集合和粒子群算法的立体仓库货位分配优化[J] . 机械科学与技术, 2012, 31(4):648-655.
[11] 高昊江, 张宜生, 肖田元. 基于聚类分析和决策树的堆垛方法优化[J] . 计算机工程, 2011, 37(12):221-223.
[12] Xue Yinghua, Liu Hongpeng. Intelligent storage and retrieval systems based on RFID and vision in automated warehouse[J] . Journal of Networks, 2012, 7(2):365-369.
[13] 郑林江. 基于智能对象的混流装配线敏捷生产管理技术研究[D] . 重庆:重庆大学, 2010.
[14] Chou Y C, Chen Y H, Chen Huimin. Recency-based storage assignment and warehouse configuration for recurrent demands[J] . Computers & Industrial Engineering, 2012, 62(4):880-889.
[15] Correia I, Melo T, Saldanha-Da-Gama F. Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions[J] . Computers & Industrial Engineering, 2013, 64(1):366-380.
[16] Guerriero F, Musmanno R, Pisacane O, et al. A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints[J] . Applied Mathematical Modelling, 2013, 37(6):4385-4398.
[17] Sahali M A, Belaidi I, Serra R. Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties[J] . International Journal of Advanced Ma-nufacturing Technology, 2015, 77(1):677-688.
[18] Liu Hui, Xin Kegui, Qi Quanquan. Study of structural damage detection with multi-objective function genetic algorithms[J] . Procedia Engineering, 2011, 12:80-86.
[19] 刘全, 王晓燕, 傅启明, 等. 双精英协同进化遗传算法[J] . 软件学报, 2012, 23(4):765-775.
[20] 金芬, 孙春华, 钟鸣. 遗传算法中适应度函数的改进[J] . 机械设计与制造, 2010(3):218-219.
收稿日期 2016/8/23
修回日期 2016/10/18
页码 24-30,34
中图分类号 TP399
文献标志码 A