《计算机应用研究》|Application Research of Computers

基于用户属性与覆盖范围的意见领袖挖掘研究

Micro-blog opinion leader mining method based on user attributes and coverage

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李亚星,王兆凯,刘利军,冯旭鹏,黄青松
机构 1.昆明理工大学 a.信息工程与自动化学院;b.教育技术与网络中心,昆明 650500;2.云南省计算机技术应用重点实验室,昆明 650500
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)12-3556-04
DOI 10.3969/j.issn.1001-3695.2017.12.008
摘要 针对微博信息的交互性和不确定性,提出一种基于用户属性与覆盖范围的意见领袖研究方法。该方法分别计算用户属性值和用户传播覆盖范围,根据粉丝忠实程度计算出用户属性值从而得到用户属性排名;利用用户间微博内容主题相似度构建贡献图,获得用户覆盖范围排名。最后,结合用户属性排名和用户覆盖范围排名生成最终的意见领袖排名。实验结果表明,该方法相比其他意见领袖挖掘方法有更好的效果。
关键词 意见领袖;情感分析;主题相似度;贡献图;延时传播
基金项目 国家自然科学基金资助项目(81360230,81560296)
本文URL http://www.arocmag.com/article/01-2017-12-008.html
英文标题 Micro-blog opinion leader mining method based on user attributes and coverage
作者英文名 Li Yaxing, Wang Zhaokai, Liu Lijun, Feng Xupeng, Huang Qingsong
机构英文名 1.a.SchoolofInformationEngineering&Automation,b.EducationalTechnology&NetworkCenter,UniversityofKunmingforScience&Technology,Kunming650500,China;2.YunnanKeyLaboratoryofComputerTechnologyApplications,Kunming650500,China
英文摘要 In view of the interaction and uncertainty of micro-blog information, this paper proposed a method for mining opi-nion leaders based on the user attributes and coverage. The method calculated the attribute value and the coverage area of users separately. According to the loyalty of the fans to get the user’ attribute ranking. It used the topical similarity as weight to build contribution diagram, and obtained each node’s coverage by traversing. Finally, it got final ranking of opinion leader combining each node’s coverage rate with attribute values. The experimental results show the proposed method has better effect compared with other method of mining opinion leaders.
英文关键词 opinion leader; sentiment analysis; topic similarity; contribution diagram; delayed transmission
参考文献 查看稿件参考文献
  [1] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media?[C] //Proc of the 19th World Wide Web Conference. New York:ACM Press, 2010:591-600.
[2] Jansen J, Zhang Mimi, Sobel K, et al. Twitter power:tweets as electronic word of mouth[J] . Journal of the American Society for Information Science and Technology, 2009, 60(11):2169-2188.
[3] 邹理. 微博传播机制的社会网络分析[J] . 求索, 2013(11):241-243.
[4] 黄发良, 张师超, 朱晓峰. 基于多目标优化的网络社区发现方法[J] . 软件学报, 2013, 24(9):2062-2077.
[5] 田秀霞, 宋羊力, 朱涛, 等. 基于用户相似度度量的有效社区Lea-der选举方法[J] . 燕山大学学报, 2014, 38(6):516-521.
[6] 樊兴华, 赵静, 方滨兴, 等. 影响力扩散概率图模型及其用于意见领袖发现研究[J] . 计算机学报, 2013, 36(2):360-367.
[7] 尹衍腾, 李学明, 蔡孟松. 基于用户关系和属性的微博意见领袖挖掘方法[J] . 计算机工程, 2013, 39(4):184-189.
[8] 吴岘辉, 张辉, 杨春明, 等. 一种话题相关的微博意见领袖挖掘算法[J] . 小型微型计算机系统, 2014, 35(10):2296-2301.
[9] Ding Zhaoyun, Jia Yan, Zhou Bin, et al. Mining topic influencers based on the multi-relational network in micro-blogging sites[J] . China Communications, 2013, 10(1):93-104.
[10] Lee C, Kwak H, Park H, et al. Finding influentials basedon the temporal order of information adoption in Twitter[C] //Proc of the 19th International Conference on Companion on World Wide Web. New York:ACM Press, 2010:1137-1138.
[11] 赵妍妍, 秦兵, 刘挺. 文本情感分析[J] . 软件学报, 2010, 21(8):1834-1848.
[12] Turney P, Littman M L. Measuring praise and criticism:inference of semantic orientation from association[J] . ACM Trans on Information Systems, 2003, 21(4):315-346.
[13] Zhu Yanlan, Min Jin, Zhou Yaqin, et al. Semantic orientation computing based on HowNet[J] . Journal of Chinese Information Processing, 2006, 20(1):14-20.
[14] Ye Shaozhi, Wu S F. Measuring message propagation and social influence on Twitter[C] //Proc of International Conference on Social Informatics. Berlin:Springer, , 2010:216-231.
[15] Zhai Zhongwu, Xu Hua, Jia Peifa. Identifying opinion leaders in BBS[C] //Proc of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. 2008:398-401.
[16] Wu Kai, Ji Xinsheng, Guo Jinshi, et al. Influence maximization algorithm for micro-blog network[J] . Journal of Computer Application, 2013, 33(8):2091-2094.
收稿日期 2016/10/29
修回日期 2017/1/5
页码 3556-3559
中图分类号 TP391
文献标志码 A