《计算机应用研究》|Application Research of Computers

基于谱聚类与多因子融合的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on spectral clustering and fusion of multiple factors

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李倩,李诗瑾,徐桂琼
机构 上海大学 管理学院,上海 200444
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)10-2905-04
DOI 10.3969/j.issn.1001-3695.2017.10.006
摘要 针对传统协同过滤算法面临数据稀疏、忽略用户时间上下文信息及对兴趣物品偏好程度等问题,提出基于谱聚类与多因子融合的协同过滤推荐算法。首先将FCM聚类融入到谱聚类算法的关键步骤,并通过聚类有效性指数对用户聚类个数进行优化,以降低生成最近邻的时耗;然后将Salton因子、时间衰减因子、用户偏好因子进行融合,从而对相似度进行改进;最后获取系统当前时间为目标用户生成推荐列表。MovieLens上的实验结果表明,该算法在推荐精度、覆盖率及新颖度指标上有较大改善,提升了推荐性能。
关键词 协同过滤;谱聚类;Salton因子;时间衰减因子;用户偏好因子
基金项目 国家自然科学基金资助项目(11201290)
本文URL http://www.arocmag.com/article/01-2017-10-006.html
英文标题 Collaborative filtering recommendation algorithm based on spectral clustering and fusion of multiple factors
作者英文名 Li Qian, Li Shijin, Xu Guiqiong
机构英文名 SchoolofManagement,ShanghaiUniversity,Shanghai200444,China
英文摘要 Due to the problems of traditional collaborative filtering recommendation algorithm, included the data sparsity, ignored the users’ time context information and preference for interest items, this paper proposed a collaborative filtering recommendation algorithm based on spectral clustering and multiple factors. Firstly, it integrated FCM into the key step of the spectral clustering, and determined the cluster number via cluster validity index, which could reduce the cost to generate a set of the nearest neighbors. Then, it improved the similarity measure by combing the Salton factor, time decay factor and user pre-ference factor. Finally, it generated the recommendation list for the objective user combining the system’s current time. The experimental results on MovieLens show that the proposed algorithm improves recommendation quality in accuracy, cove-rage and novelty.
英文关键词 collaborative filtering; spectral clustering; Salton factor; time decay factor; user preference factor
参考文献 查看稿件参考文献
  [1] Ricci F, Rokcah L, Shapira B, et al. Recommender systems handbook[M] . New York:Springer-Verlag, 2011.
[2] 邓爱林, 左子叶, 朱扬勇. 基于项目聚类的协同过滤推荐算法[J] . 小型微型计算机系统, 2004, 25(9):1665-1670.
[3] Moradi P, Ahmadian S, Akhlaghian F. An effective trust-based reco-mmendation method using a novel graph clustering algorithm[J] . Physical A:Statistical Mechanics & Its Applications, 2015, 436(10):462-481.
[4] 王明佳, 韩景倜, 韩松乔. 基于模糊聚类的协同过滤算法[J] . 计算机工程, 2012, 38(24):50-52.
[5] Alper B, Huseyin P. A comparison of clustering-based privacy-preserving collaborative filtering schemes[J] . Applied Soft Computing, 2013, 13(5):2478-2489.
[6] 杨怀珍, 丛晓琪, 刘枚莲. 基于时间加权的个性化推荐算法研究[J] . 计算机工程与科学, 2009, 31(6):126-128.
[7] 李国, 张智斌, 刘芳先, 等. 非线性组合的协同过滤推荐算法[J] . 计算机应用, 2011, 31(11):3063-3067.
[8] 邓华平. 基于项目聚类和评分的时间加权协同过滤算法[J] . 计算机应用研究, 2015, 32(7):1966-1969.
[9] Ahn H J. A new similarity measure for collaborative filtering to alle-viate the new user cold-starting problem[J] . Information Sciences, 2008, 178(1):37-51.
[10] Li Dongsheng, Lyu Qin, Li Shang, et al. Item-based top-N recommendation resilient to aggregated information revelation[J] . Know-ledge-Based Systems, 2014, 67(9):290-304.
[11] 李振博, 徐桂琼, 査九. 基于Nystrm扩展谱聚类的社会化推荐算法[J] . 计算机应用研究, 2015, 32(11):3238-3241.
[12] Song Wang, Siskind J M. Image segmenation with ratio cut[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(6):675-690.
[13] Arbelaitz O, Gurrutxaga I, Muguerza J, et al. An extensive comparative study of cluster validity indices[J] . Pattern Recognition, 2013, 46(1):243-256.
[14] Chen Jiashun, Pi Dechang. A cluster validity index for fuzzy clustering based on non-distance[C] //Proc of the 5th International Confe-rence on Computational and Information Sciences. 2013:880-883.
[15] 查九, 李振博, 徐桂琼. 基于组合相似度的优化协同过滤算法[J] . 计算机应用与软件, 2014, 31(12):323-328.
[16] 王茜, 王锦华. 结合信任机制和用户偏好的协同过滤推荐算法[J] . 计算机工程与应用, 2015, 51(10):261-270.
[17] Herrada O C. Music recommendation and discovery in the long tail[EB/OL] . (2011-06-28). http://mtg. upf. edu/static/media/PhD_ocelma. pdf.
[18] ACM RecSys 2011 International Workshop. DiveRS 2011:international workshop on novelty and diversity in recommender systems[EB/OL] . (2011-10-13). http:/ir. ii. uam. es/divers2011/.
收稿日期 2016/7/19
修回日期 2016/8/29
页码 2905-2908
中图分类号 TP181
文献标志码 A