《计算机应用研究》|Application Research of Computers

基于动态规划不同优化目标的HEV转矩分配策略对比研究

Comparison of torque distribution strategies with different optimization objective function for HEV based on dynamic programming

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杜常清,甘雯雯,张佩
机构 武汉理工大学 现代汽车零部件技术湖北省重点实验室 汽车零部件技术湖北省协同创新中心,武汉 430070
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)05-1308-03
DOI 10.3969/j.issn.1001-3695.2017.05.006
摘要 双动力源的结构模式使得混合动力汽车相对于传统汽车拥有更高的燃油经济性,同时也给混合动力汽车整车控制器的设计提出了更高的要求。采用动态规划算法,分别以油耗最低同时电池SOC波动尽可能小以及整车效率最高为目标,对混合动力汽车在NEDC循环工况下的最优转矩分配进行求解。并将两种转矩分配计算结果进行对比分析,得出选择不同优化目标对控制效果的影响以及SOC参数选择的标准,为制定更加高效的控制规则提供了理论依据。
关键词 混合动力汽车;整车控制;转矩分配;动态规划
基金项目 国家自然科学基金资助项目(51275367)
国家科技支撑计划资助项目(2013BAG09B00)
本文URL http://www.arocmag.com/article/01-2017-05-006.html
英文标题 Comparison of torque distribution strategies with different optimization objective function for HEV based on dynamic programming
作者英文名 Du Changqing, Gan Wenwen, Zhang Pei
机构英文名 HubeiCollaborativeInnovationCenterforAutomativeComponentsTechnology,HubeiProvinceKeyLaboratoryofModernAutomativeTechnology,WuhanUniversityofTechnology,Wuhan430070,China
英文摘要 The hybrid electric vehicles with dual power sources have higher fuel economy compared to conventional cars, while it puts forward higher requirements to the design of vehicle controller. This paper applied dynamic programming algorithm to calculate the optimal torque distribution of hybrid vehicles under the NEDC driving cycle with two different optimization objective: the lowest fuel consumption while the stable fluctuation of SOC and the highest efficiency of the vehicle. It analyzed the comparison of these two kinds of torque distribution results to figure out the influence of different optimization objective on the vehicle performance, and proposed the standard of SOC parameters setting which could provide a theoretical basis for the development of more efficient control strategies.
英文关键词 hybrid electric vehicle(HEV); vehicle control; torque distribution; dynamic programming
参考文献 查看稿件参考文献
  [1] Xiong Weiwei, Zhang Yong. Optimal energy management for a series-parallel hybrid electric bus[J] . Energy Conversion and Management, 2009, 50(7):1730-1738. [2] Zhang Pei, Yan Fuwu, Du Changqing. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[J] . Renewable and Sustainable Energy Reviews, 2015, 48(3):88-104. [3] Zhang Shuo, Zhang Chengning. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system[J] . The Scientific World Journal, 2014, 2014(1):958239. [4] Wang J, Wang Q N, Wang P Y, et al. Hybrid electric vehicle modeling accuracy verification and global optimal control algorithm research[J] . International Journal of Automotive Technology, 2015, 16(3):513-524. [5] Patil R M, Filipi Z, Fathy H K. Comparison of supervisory control strategies for series plug-in hybrid electric vehicle powertrains through dynamic programming[J] . IEEE Trans on Control Systems Technology, 2014, 22(2):502-509. [6] Shams-Zahraei M, Kouzani A Z, Kutter S, et al. Integrated thermal and energy management of plug-in hybrid electric vehicles[J] . Journal of Power Sources, 2012, 216(5):237-248. [7] Lai Lin, Ehsani M. Dynamic programming optimized constrained engine on and off control strategy for parallel HEV[C] //Proc of the 9th IEEE Vehicle Power and Propulsion Conference. 2013:422-426. [8] Li Weimin, Xu Guoqing, Wang Zhancheng, et al. Dynamic energy management for hybrid electric vehicle based on approximate dynamic programming[C] //Proc of the 7th World Congress on Intelligent Control and Automation. 2008. [9] Sinoquet D, Rousseau G, Milhau Y. Design optimization and optimal control for hybrid vehicles[J] . Optimization and Engineering, 2011, 12(1):199-213. [10] Zhao Xinxin, Zhang Wenming, Feng Yali, et al. Optimizing gear shifting strategy for off-road vehicle with dynamic programming[J] . Mathematical Problems in Engineering, 2014, 2014(10):642949.
收稿日期 2016/4/9
修回日期 2016/5/30
页码 1308-1310,1336
中图分类号 TP391.7;U469.72
文献标志码 A