《计算机应用研究》|Application Research of Computers

免疫进化否定选择算法

Immune evolution negative selection algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 高江锦,杨韬
机构 西华师范大学 教育信息技术中心,四川 南充 637002
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2017)05-1293-05
DOI 10.3969/j.issn.1001-3695.2017.05.003
摘要 当训练样本分布密集交错时,传统的否定选择算法难以将检测器生成在正/反样本间的有效区域,导致检测器集合对这些样本的识别率降低,影响了算法性能。为使检测器能有效地识别分布密集交错的样本,提出了免疫进化否定选择算法(IENSA)。IENSA通过加入两个免疫进化过程,首先在样本分布密集的区域引导检测器在正/反样本之间有效地生成,然后在样本分布稀疏的区域对冗余检测器进行抑制。实验结果表明在二维人工数据集Rectangle与三维标准数据集Skin segmentation上,相对于经典的RNSA与V-detector算法,IENSA均能以较少的检测器达到较高的检测率。
关键词 人工免疫;否定选择算法;检测器;免疫进化
基金项目 国家自然科学基金资助项目(61402308)
四川省教育厅自然科学重点资助项目(15ZA0146,15ZB0142)
本文URL http://www.arocmag.com/article/01-2017-05-003.html
英文标题 Immune evolution negative selection algorithm
作者英文名 Gao Jiangjin, Yang Tao
机构英文名 Education&InformationTechnologyCenter,ChinaWestNormalUniversity,NanchongSichuan637002,China
英文摘要 When the samples distribute densely, the traditional negative selection algorithm is difficult to generate detectors in the gap between normal and abnormal samples, it causes that the algorithm has the low detecting rate for these samples. In order to enable the detector to effectively identify the densely samples, this paper proposed the immune evolution negative selection algorithm (IENSA). By adding two immune evolution processes, IENSA could generate detector in the gap between normal and abnormal samples effectively, and restrain the redundant detector in the sparse area of the sample distribution. The experimental result show that, on the artificial data set Rectangle (2D) and the UCI standard data set Skin segmentation(3D), compared to the classical RNSA and V-detector algorithm, IENSA can reach the higher detection rate with the less antibodies and training time.
英文关键词 artificial immune; negative selection algorithm; detector; immune evolution
参考文献 查看稿件参考文献
  [1] Bretscher P, Cohn M. A theory of self-noself discrimination[J] . Scien-ce, 1970, 169(3950):1042-1049. [2] Forrest S, Perelson A, Allen L, et al. Self-nonself discrimination in a computer[C] //Proc of IEEE Symposium on Research in Security and Privacy. Washington DC:IEEE Computer Society, 1994:202-212. [3] Gonzalez F, Dasgupta D, Nio L F. A randomized real-valued negative selection algorithm[C] //Proc of the 2nd International Conference on Artificial Immune Systems. Berlin:Springer-Verlag, 2003:261-272. [4] Zhou Ji, Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors[C] //Proc of Genetic and Evolutionary Computation Conference. Berlin:Springer-Verlag, 2004:287-298. [5] Chen Wen, Liu Xiaojie, Li Tao, et al. A negative selection algorithm based on hierarchical clustering of self set and its application in anomaly detection[J] . International Journal of Computational Intelligence Systems, 2011, 4(4):410-419. [6] Gong Maoguo, Zhang Jian, Ma Jingjing, et al. An efficient negative selection algorithm with further training for anomaly detection[J] . Knowledge-Based Systems, 2012, 30(2):185-191. [7] 白鹏翔, 张清华, 段富. 网络故障诊断研究中一种优化的否定选择算法[J] . 计算机应用研究, 2015, 32(10):3131-3133. [8] 张凤斌, 杨泽, 葛海洋. 基于聚类的邻域检测器生成算法[J] . 计算机科学, 2016, 42(2):131-136. [9] 徐甫. 基于可信根的计算机终端免疫模型[J] . 电子学报, 2016, 44(3):653-657. [10] 谢丽霞, 赵彬彬. 基于人工免疫系统的僵尸短信入侵检测[J] . 电子技术应用, 2015, 41(7):103-106. [11] 魏萌, 贾遂民, 胡明生. 融合危险理论和否定选择的入侵防御系统[J] . 微电子学与计算机, 2014, 31(7):109-112. [12] 陈晋音, 杨东勇. 基于轻量级人工免疫计算的混合入侵检测方法[J] . 信息与控制, 2012, 41(5):529-536. [13] 白鹏翔, 张清华, 段富, 等. 基于模糊规则的免疫算法在网络入侵中的应用[J] . 计算机工程与设计, 2015, 36(12):3246-3249. [14] 张凤斌, 孙刚, 张斌. 一种基于免疫入侵检测的攻击路径标志技术研究[J] . 计算机应用研究, 2014, 31(1):217-221. [15] 程建, 张明清, 刘小虎, 等. 基于人工免疫的分布式入侵检测模型[J] . 计算机应用, 2014, 31(1):86-89, 94. [16] Perelson A S, Weisbuch G. Immunology for physicists[J] . Reviews of Modern Physics, 1997, 69(4):1219-1267. [17] Skin segmentation data set[DB/OL] . http://archive. ics. uci. edu/ml/datasets/Skin Segmentation.
收稿日期 2016/4/8
修回日期 2016/5/29
页码 1293-1297
中图分类号 TP301.6
文献标志码 A