《计算机应用研究》|Application Research of Computers

基于OpenGL驱动的三维场景重构

3D scene reconstruction based on OpenGL

免费全文下载 (已被下载 次)  
获取PDF全文
作者 廖明,周良辰,闾国年,盛业华,朱经纬,蒋成明
机构 1.解放军理工大学 机电教研中心,南京 210094;2.南京师范大学 虚拟地理环境实验室,南京 210023
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1276-05
DOI 10.3969/j.issn.1001-3695.2015.04.076
摘要 基于OpenGL环境,提出利用场景渲染结果即帧缓存数据(主要包括颜色缓存及深度缓存)进行局部三维场景重构的方法。根据投影变换原理和深度缓存特点研究了逆投影变换,得到了三维点元的重构方法。在此基础上,利用帧缓存数据重构每像素对应的三维点元,从而构成相机坐标系下的三维点云模型,即原始三维场景在当前相机视角下的离散采样,被定义为虚拟视模型。根据透视投影和帧缓存的特点,分析了虚拟视模型的点位精度,实验表明虚拟视模型具有较高的相对精度。提出的场景重构方法具有天然的多分辨特性,支持场景简化与流式传输以及独立于场景的具体表示形式,可采用拦截方式从一般三维软件中实时重构虚拟视模型,从而提供了一种获取三维数据的新方法。
关键词 帧缓存;深度缓存;投影变换;三维重构;虚拟视模型
基金项目 国家科技支撑计划资助项目(2012BAH35B02)
校预研基金资助项目(KYGYZLXY1309)
本文URL http://www.arocmag.com/article/01-2015-04-076.html
英文标题 3D scene reconstruction based on OpenGL
作者英文名 LIAO Ming, ZHOU Liang-chen, LV Guo-nian, SHENG Ye-hua , ZHU Jing-wei, JIANG Cheng-ming
机构英文名 1. Electromechanical Teaching & Research Center, Engineer University of PLA, Nanjing 210094, China; 2. Virtual Geographical Environmental Key Laboratory, Nanjing Normal University, Nanjing 210023, China
英文摘要 Based on OpenGL, this paper presented a local 3D scene reconstruction from the frame buffers (including color buffer and depth buffer) after 3D scene rendered.According to projection principles and depth buffer characteristics, it discussed an inverse projection processing and obtained theoretically a 3D vertex reconstruction method.As a result, it transformed all valid pixels within frame buffers and generated a 3D vertex set which was a point cloudy model in the camera space in the conducted experiments.Obviously, this cloudy model was a kind of a sample of the original 3D scene in current camera system and named as virtual vision model(VVM).Secondly, it analyzed the point-wise precision of VVM detailed.The results of experiments show that VVM appears very high relative accuracy to the original 3D scene. Above all, the reconstruction method appears natural multi-resolution feature with respect to the resolution of frame buffers and supports scene simplification and streaming transmission.On the other hand, this method is capable of abstracting VVM real-time from the common 3D software easily without any details of 3D scene known previously, which provides a new approach acquiring 3D data efficiently.
英文关键词 frame buffer; depth buffer; projection transforming; 3D reconstruction; virtual visional model
参考文献 查看稿件参考文献
  [1] JAN K, OLA F, MARKUS H, et al. Technical section:visual computing for medical diagnosis and treatment[J] . Computers and Graphics, 2009, 33(4):554-565.
[2] 侯鹏高. 虚拟人体研究进展[J] . 齐齐哈尔医学院学报, 2013, 34(15):2280-2284.
[3] 万鹏, 姜立军, 陈学东, 等. 基于图像处理的外螺纹三维模型重构[J] . 工程图学学报, 2012, 33(1):68-72.
[4] BERGER M, LEVINE J A, NONATO L G, et al. A benchmark for surface reconstruction[J] . ACM Trans on Graphics, 2013, 32(2):20.
[5] SIBLEY G, MEI C, REID I, et al. Vast-scale outdoor navigation using adaptive relative bundle adjustment[J] . The International Journal of Robotics Research, 2010, 29(8):958-980.
[6] INDELMAN V, GURFIL P, RIVLIN E, et al. Distributed vision-aided cooperative localization and navigation based on three-view geometry[J] . Robotics and Autonomous Systems, 2012, 60(6):822-840.
[7] IGNATOV A, KIM M. Multi-view video composition with computer graphics[M] . Berlin:Springer, 2006:292-301.
[8] 明镜. 三维地质建模技术研究[J] . 地理与地理信息科学, 2011, 27(4):14-18.
[9] 张维忠, 赵志刚, 油世明, 等. 绕光轴旋转拍摄LCD平面靶标实现相机标定[J] . 仪器仪表学报, 2011, 32(1):120-124.
[10] 胡建材, 刘先勇, 邱志强. 基于因子分解和光束法平差的摄像机自标定[J] . 光电工程, 2011, 38(3):63-66.
[11] HERBORT S, WHLER C. An introduction to image-based 3D surface reconstruction and a survey of photometric stereo methods[J] . 3D Research, 2011, 2(3):1-17.
[12] 李续武. 基于三维扫描工程建模的面部整形点云数据处理方法研究[D] . 重庆:重庆大学, 2013.
[13] GLVEZ A, IGLESIAS A. Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points[J] . Information Sciences:an International Journal, 2012, 192(6):174-192.
[14] 夏艳华, 白世伟. 三维底层建模钻孔数据预处理研究[J] . 岩土力学, 2012, 33(4):1223-1226.
[15] WAN S J, PRUSINKIEWICZ P, WONG S K M. Variance-based color image quantization for frame buffer display[J] . Color Research & Application, 1990, 15(1):52-58.
[16] KARABASSI E A, PAPAIOANNOU G, THEOHARIS T. A fast depth-buffer-based voxelization algorithm[J] . Journal of Graphics Tools, 1999, 4(4):5-10.
[17] YANG Lei, SANDER P V, LAWRENCE J. Geometry-aware framebuffer level of detail[J] . Eurographics Symposium on Rendering, 2008, 27(4):1183-1188.
[18] JIANG Yi-fei, LI Yi-fu, BAN Dong-song, et al. Frame buffer compression without color information loss[C] //Proc of the 12th International Conference on Computer and Information Technology. [S. l. ] :IEEE Press, 2012:12-17.
[19] KRIVOKUC′A M, WNSCHE B C, ABDULLA W. A new error metric for geometric shape distortion using depth values from orthographic projections[C] //Proc of the 27th Conference on Image and Vision Computing. New York:ACM Press, 2012:388-393.
[20] VAJRAMUSHTI N, KAKADIARIS I A, THEOHARIS T, et al. Efficient 3D object retrieval using depth images[C] //Proc of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval. New York:ACM Press, 2004:189-196.
[21] ZHOU Tian-shu, CHEN J X, SMITH P. Scene depth reconstruction on the GPU:a post processing technique for layered fog[M] . Berlin:Springer, 2007:165-174.
[22] HIDEMI Y, YASUYUKI S, YASUSHI K, et al. Evaluation of a technique for collision and object detection with the Z-buffer in cyber space[C] //Proc of International Conference on Cyberworlds. 2011:112-120.
[23] CANT R, LANGENSIEOEN C. Creating depth of field effects without multiple samples[C] //Proc of the 14th International Conference on Computer Modelling and Simulation. [S. l. ] :IEEE Press, 2012:159-164.
[24] 米志强. 摄影测量与遥感[M] . 北京:煤炭工业出版社, 2008:45-46.
[25] GORTLER S J. Foundations of 3D computer graphics[M] . Cambridge:MIT Press, 2012:21-26.
[26] SHREINER D. OpenGL编程指南[M] . 李军, 等译. 7版. 北京:机械工业出版社, 2010:93-96.
收稿日期 2014/3/20
修回日期 2014/5/19
页码 1276-1280
中图分类号 TP391.9
文献标志码 A