《计算机应用研究》|Application Research of Computers

基于蚁群优化多层图划分的彩色图像分割方法

Color image segmentation based on multi-level graph partitioning using ant colony optimization

免费全文下载 (已被下载 次)  
获取PDF全文
作者 葛亮,杨竣铎
机构 重庆大学 计算机学院 软件理论与技术重庆市重点实验室,重庆 400044
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1265-04
DOI 10.3969/j.issn.1001-3695.2015.04.073
摘要 为了消除基于谱聚类的归一化切分图像分割中聚类参数对分割结果的约束,提出了一种基于蚁群优化的多层图划分算法来进行归一化切分,进而对彩色自然景观图像进行分割。该算法将代表图像的相似度图作为蚁群的栖息环境,在归一化割准则的指导下,通过蚂蚁的觅食行为将相似的顶点逐渐聚集在一起,从而以多层的方式完成图划分。为了降低图像分割的计算量,利用超像素对图像进行预处理。实验对比表明,该算法消除了归一化切分分割结果对聚类参数的依赖,并提高了归一化切分分割的准确性和速度。
关键词 彩色图像分割;归一化切分;蚁群优化;多层图划分;超像素
基金项目 国家自然科学基金资助项目(61073058,61201347)
重庆市科委自然科学基金计划资助项目(cstc2012jjA40011)
本文URL http://www.arocmag.com/article/01-2015-04-073.html
英文标题 Color image segmentation based on multi-level graph partitioning using ant colony optimization
作者英文名 GE Liang, YANG Jun-duo
机构英文名 Chongqing Key Laboratory of Software Theory & Technology, College of Computer Science, Chongqing University, Chongqing 400044, China
英文摘要 In order to eliminate the restraint of clustering number to segmentation result of spectral clustering based normalized cut image segmentation, this paper proposed an ant colony optimization based multi-level graph partition algorithm which was used to segment color natural landscape image.The proposed algorithm regarded similarity graph corresponding to image as ant colony’s habitat, and then grouped similar vertices into partitions gradually under the guidance of normalized cut criterion using ant’s foraging behavior, which completed graph partition problem by a multi-level way.To reduce calculated quantity of image segmentation, it utilized an effective super-pixel algorithm to preprocess original image.Contrast experiment shows that the proposed algorithm eliminates the restraint, while improves accuracy and speed of image segmentation based on normalized cut criterion.
英文关键词 color image segmentation; normalized cut; ant colony optimization; multilevel graph partitioning; super-pixel
参考文献 查看稿件参考文献
  [1] 侯叶. 基于图论的图像分割技术研究[D] . 西安:西安电子科技大学, 2011.
[2] ULRIKE L V. A tutorial on spectral clustering[J] . Statistics and Computing, 2007, 17(4):395-416.
[3] 席秋波. 基于NCut的图像分割算法研究[D] . 成都:电子科技大学, 2011.
[4] 翟艳鹏, 郭敏, 马苗, 等. 遗传算法优化归一化划分准则的图像分割[J] . 计算机工程与应用, 2010, 46(33):148-157.
[5] 周逊, 郭敏, 马苗, 等. 基于鱼群算法优化normalized cut的图像分割方法[J] . 计算机应用研究, 2013, 30(2):616-618.
[6] TAO Wen-bin, JIN Hai, ZHANG Yi-min. Color image segmentation based on Mean Shift and normalized cuts[J] . IEEE Trans on Systems, 2007, 37(5):1382-1389.
[7] 冯林, 孙焘, 吴振宇, 等. 基于分水岭变换和图论的图像分割方法[J] . 仪器仪表学报, 2008, 29(3):649-653.
[8] SHI Jian-bo, MALIK J D. Normalized cuts and image segmentation[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
[9] CHUNG F. Spectral graph theory[M] . [S. l. ] :American Mathematical Society, 1997.
[10] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J] . Journal of Latex Class Files, 2011, 6(1):92-99.
[11] REN C Y, REID I. gSLIC:a real-time implementation of SLIC superpixel segmentation[R] . Oxford:Department of Engineering, University of Oxford, 2011.
[12] KATERINA T, PETER K, JURIJ S. A distributed multilevel ant colonies approach for graph partitioning[J] . International Journal of Bio-Inspired Computation, 2011, 3(5):286-296.
[13] DORIGO M, BIRATTARI M, STUZLE T. Ant colony optimization[J] . IEEE Computational Intelligence Magazine, 2006, 1(4):28-39.
[14] ESTRADA F J, JEPSON A D. Benchmarking image segmentation algorithms[J] . International Journal of Computer Vision, 2009, 85(2):167-181.
[15] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(5):530-549.
[16] ARBELAEZ P, MAIRE M, FOWLKES C. Contour detection and hierarchical image segmentation[J] . IEEE Trans on Pattern Analysis & Machine Intelligence, 2011, 33(5):898-916.
[17] UNNIKRISHNAN R, PANTOFARU C, HEBERT M. A measure for objective evaluation of image segmentation algorithm[C] //Proc of IEEE Conference on CVPR. 2005:34-41.
[18] MEILA M. Comparing clustering:an axiomatic view[C] //Proc of International Conference on Machine Learning. 2005:577-584.
收稿日期 2014/3/24
修回日期 2014/5/16
页码 1265-1268
中图分类号 TP391.41
文献标志码 A