《计算机应用研究》|Application Research of Computers

一种改进的非刚性医学图像配准算法

Improved non-rigid medical image registration algorithm

免费全文下载 (已被下载 次)  
获取PDF全文
作者 张静亚,王加俊
机构 1.苏州大学 电子信息学院,江苏 苏州 215006;2.常熟理工学院 物理与电子工程学院,江苏 常熟 215500
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1261-04
DOI 10.3969/j.issn.1001-3695.2015.04.072
摘要 非刚性医学图像配准是医学影像处理和应用中重要的研究课题。对传统的基于局部仿射变换的非刚性图像配准模型进行了改进,结合图像的区域灰度信息和切比雪夫低通滤波器幅度特性提出了一种新颖的非刚性医学图像配准算法。该算法采用自适应的局部非线性正则项,比传统算法更好地保持了图像的局部细节和边缘信息,通过结合多分辨率分层细化以及由粗到细的变形技术求解策略,很好地解决了传统配准模型无法对大变形单模态图像或者存在灰度差异的多模态图像之间进行配准的问题。实验证明,该模型和算法可以很好地实现对医学图像的非刚性配准。
关键词 非刚性医学图像配准;局部仿射变换;切比雪夫滤波器;正则项
基金项目 国家自然科学基金资助项目(60871086)
江苏省自然科学基金资助项目(BK2008159)
江苏省普通高校研究生科研创新计划资助项目(CXZZ11_0099)
本文URL http://www.arocmag.com/article/01-2015-04-072.html
英文标题 Improved non-rigid medical image registration algorithm
作者英文名 ZHANG Jing-ya, WANG Jia-jun
机构英文名 1. School of Electronic & Information Engineering, Soochow University, Suzhou Jiangsu 215006, China; 2. College of Physics & Electronic, Changshu Institute of Technology, Changshu Jiangsu 215500, China
英文摘要 The non-rigid registration is one of the most important research areas for various medical image analysis tasks and applications.This paper proposed a novel non-rigid image registration algorithm based on the traditional local affine transformation model.In order to protect the image local details and edges, it used an adaptive nonlinear regularization term which took into account the regional statistical intensity information and the magnitude characteristic of the Chebyshev low pass filter.In the framework of the multi-resolution layered refining and coarse-to-fine warping strategy, the proposed algorithm achieved good performance in the registration of mono-modality medical images with relative larger deformations and the fine registration of multi-modality images with intensity variations which couldn’t be processed by traditional algorithms.The experimental results show that the proposed algorithm is effective for non-rigid medical image registration.
英文关键词 non-rigid medical image registration; local affine transformation; Chebyshev filter; regularization term
参考文献 查看稿件参考文献
  [1] SOTIRAS A, DAVATZIKOS C, PARAGIOS N. Deformable medical image registration:a survey[J] . IEEE Trans on Medical Imaging, 2013, 32(7):1153-1190.
[2] MARKELJ P, TOMAEVIC D, LIKAR B, et al. A review of 3D/2D registration methods for image-guided interventions[J] . Medical Image Analysis, 2012, 16(3):642-661.
[3] RUECKERT D, SONODA L, HAYES C, et al. Nonrigid registration using free-form deformations:application to breast MR images[J] . IEEE Trans on Medical Imaging, 1999, 18(8):712-721.
[4] CLATZ O, DELINGETTE H, TALOS I F, et al. Robust nonrigid registration to capture brain shift from intraoperative MRI[J] . IEEE Trans on Medical Imaging, 2005, 24(11):1417-1427.
[5] 王婕妤, 王加俊, 张静亚. 基于改进光流场和尺度不变特征变换的非刚性医学图像配准[J] . 电子与信息学报, 2013, 35(5):1222-1228.
[6] LOMBAERT H, GRADY L, PENNEC X, et al. Spectral log-demons:diffeomorphic image registration with very large deformations[J] . International Journal of Computer Vision, 2013, 107(3):1-18.
[7] PERIASWAMY S, FARID H. Elastic registration in the presence of intensity variations[J] . IEEE Trans on Medical Imaging, 2003, 22(7):865-874.
[8] ZHUANG Xia-hai, ARRIDGE S, HAWKES D J, et al. A nonrigid registration framework using spatially encoded mutual information and free-form deformations[J] . IEEE Trans on Medical Imaging, 2011, 30(10):1819-1828.
[9] ZHANG Jing-ya, WANG Jia-jun, WANG Xiu-ying, et al. The adaptive FEM elastic model for medical image registration[J] . Physics in Medicine and Biology, 2014, 59(1):97-118.
[10] KROON D J, SLUMP C H. MRI modalitiy transformation in demon registration[C] //Proc of IEEE International Symposium on Biomedical Imaging:from Nano to Macro. 2009:963-966.
[11] 许鸿奎, 江铭炎, 杨明强. 基于改进光流场模型的脑部多模医学图像配准[J] . 电子学报, 2012, 40(3):525-529.
[12] NAGEL H, ENKELMANN W. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8(5):565-593.
[13] ZIMMER H, BRUHN A, WEICKERT J. Optic flow in harmony[J] . International Journal of Computer Vision, 2011, 93(3):368-388.
[14] SAND P, TELLER S. Particle video:long range motion estimation using point trajectories[J] . International Journal of Computer Vision, 2008, 80(1):72-91.
[15] LORENZI M, AYACHE N, FRISONI G B, et al. LCC-Demons:a robust and accurate symmetric diffeomorphic registration algorithm[J] . NeuroImage, 2013, 81(1):470-483.
[16] TOEWS M, WELLS W M. Efficient and robust model-to-image alignment using 3D scale-invariant features[J] . Medical Image Analysis, 2013, 17(3):271-282.
收稿日期 2014/3/14
修回日期 2014/4/24
页码 1261-1264
中图分类号 TP391.41
文献标志码 A