《计算机应用研究》|Application Research of Computers

二次NURBS曲线及曲面权重系数的研究

Study of weight for quadric NURBS curve and surface

免费全文下载 (已被下载 次)  
获取PDF全文
作者 马力全,蒋占四,蒋玉龙,胡志鹏
机构 桂林电子科技大学 机电工程学院,广西 桂林 541004
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1253-04
DOI 10.3969/j.issn.1001-3695.2015.04.070
摘要 针对二次NURBS曲线及双二次NURBS曲面的权重系数计算方法进行了研究,提出了一种新的二次NURBS曲线、曲面的权重系数计算方法。该方法改进了现有方法中数据规范化、相关矢量和相关矩阵的计算方法,去掉了在计算过程中对相关矩阵的求逆,并且增加了一项顶点系数。与现有方法相比,该方法能够更快地计算出每一个控制顶点的权重系数。采用几个经典的数值算例对该方法进行了验证,结果表明用该方法计算的权重系数去进行曲线、曲面的拟合,能够得到比现有方法更高的拟合精度。
关键词 权重系数;二次NURBS曲线;双二次NURBS曲面;拟合精度
基金项目 国家自然科学基金资助项目(51165003)
中国博士后科学基金资助项目(20110490868)
广西制造系统与先进制造技术重点实验室开放课题(1404515009Z)
本文URL http://www.arocmag.com/article/01-2015-04-070.html
英文标题 Study of weight for quadric NURBS curve and surface
作者英文名 MA Li-quan, JIANG Zhan-si, JIANG Yu-long, HU Zhi-peng
机构英文名 School of Electromechanical Engineering, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
英文摘要 Aiming at the calculation method of the quadratic NURBS curve and the double quadratic NURBS surface, this paper presented a new method of calculating the weight coefficient for quadric NURBS curve and surface.It made some improvements in many aspects, such as: improving the date normalization and the calculation method of the correlation vector and correlation matrix, avoiding inverse matrix calculation, and adding a point coefficient when calculating the weight coefficient.Compared with the existing methods, this method could calculate the weight coefficient of each point more quickly.It used several classic numerical examples to validate the proposed method. The results show that using the weight coefficient which is calculated by the proposed method to fit the curve and surface can get a higher precision than the existing methods.
英文关键词 weight coefficient; quadratic NURBS curve; double quadratic NURBS surface; fitting precision
参考文献 查看稿件参考文献
  [1] 李英杰. NURBS曲面构造、拼接及光顺的研究与实现[D] . 西安:西安理工大学, 2010.
[2] 闫艳. NURBS曲线形状修改的研究[J] . 信息工程大学学报, 2013, 14(6):647-651.
[3] MOHAMMED Z, RGIS D, MICHAEL R D. On the role played by NURBS weights in isogeometric structural shape optimization[C] //Proc of International Conference on Inverse Problems, Control and Shape Optimization. 2010:2-3.
[4] CAMERON J T. HyPerModels:hyperdimensional performance models for engineering design[D] . Austin:The University of Texas at Austin, 2005.
[5] CAMERON J T, RICHARD H C. N-dimensional nonuniform rational B-splines for metamodeling[J] . Journal of Computing and Information Science in Engineering, 2009, 9(3):12-13.
[6] 施法中. 计算机辅助几何设计与非均匀有理B样条[M] . 北京:高等教育出版社, 2001:310, 435.
[7] De BOOR C. On calculating with B-splines[J] . Journal of Approximation Theory, 1972, 6(1):50-62.
[8] PIEGL L, TILLER W. The NURBS book[M] . 赵罡, 穆国旺, 王拉住, 译. 2版. 北京:清华大学出版社, 2010:256-257.
[9] 王静文, 刘弘. 基于B样条曲线的植物叶片几何建模[J] . 计算机应用研究, 2013, 30(5):1571-1573.
[10] 吴义忠, 陈立平. 多领域物理系统的仿真优化方法[M] . 北京:科学出版社, 2011:216.
[11] MICHAEL J S. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[D] . Ann Arbor:The University of Michigan, 2002.
收稿日期 2014/3/5
修回日期 2014/4/24
页码 1253-1256,1260
中图分类号 TP391.75
文献标志码 A