《计算机应用研究》|Application Research of Computers

基于变密度稀疏采样的微波辐射干涉测量反演成像方法

Microwave radiation interferometry inversion imaging method based on variable density sparse sampling

免费全文下载 (已被下载 次)  
获取PDF全文
作者 朱路,陈素华,刘江锋,刘媛媛,杜江洪
机构 1.华东交通大学 信息工程学院,南昌 330013;2.南昌陆军学院,南昌 330103
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1236-04
DOI 10.3969/j.issn.1001-3695.2015.04.066
摘要 针对微波辐射干涉测量在频域中进行测量值具有低频信息较少、高频信息丰富,且低频信息和高频信息分布比较集中的特点,提出了一种基于变密度稀疏采样的微波辐射干涉测量方法。该方法将测量的频域信息进行分块,根据不同块所包含信息量的不同,利用变密度进行稀疏采样。考虑微波辐射图像本身具有的梯度稀疏性和局部光滑性特征,建立全变差正则化约束的成像模型,并采用交替迭代算法进行微波辐射图像最优重构。仿真和实验结果表明,结合变密度稀疏采样方法和交替迭代重构算法能够快速、准确地反演高分辨率微波辐射图像;在总采样率相同的情况下,该方法能够大幅度提高反演图像的分辨率,且对低采样率情况效果显著。
关键词 微波辐射干涉测量;变密度稀疏采样;全变差;交替迭代算法
基金项目 国家自然科学基金资助项目(61162015,31101081)
本文URL http://www.arocmag.com/article/01-2015-04-066.html
英文标题 Microwave radiation interferometry inversion imaging method based on variable density sparse sampling
作者英文名 ZHU Lu, CHEN Su-hua, LIU Jiang-feng, LIU Yuan-yuan, DU Jiang-hong
机构英文名 1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China; 2. Nanchang Military Academy, Nanchang 330103, China
英文摘要 Considering the situations of the microwave radiation interferometry conducted in the frequency domain, which had the characteristics of low frequency information less and high frequency information richer, and the distribution of low frequency and high frequency was centralized, this paper put forward the microwave radiation interferometry method based on the variable density sparse sampling.The method chunked the image’s frequency domain information, and adopted the variable density sampling scheme based on the principle of the different blocks possess different information. According to the gradient sparsity and the local smoothness of microwave radiation image, it established the imaging model based on total variation regularization constraint, and used the alternating iterative algorithm to realize the optimal microwave radiation image reconstruction. The simulation and experiment results show that it is fast and accurate to reconstruct high resolution microwave radiation image combined with the variable density sparse sampling method and the alternating iterative algorithm. It can greatly improve the resolution of the inversion image in the case of the same sampling rate, and is very effective when the sampling rate is very low.
英文关键词 microwave radiation interferometry measurement(MRIM); variable density sparse sampling; total variation; alternating direction algorithm
参考文献 查看稿件参考文献
  [1] SWIFT C T, LEVINE D M, RUF C S. Aperture synthesis concepts in microwave remote sensing of the earth[J] . IEEE Trans on Microwave Theory and Techniques, 1991, 39(12):1931-1935.
[2] 胡岸勇, 苗俊刚, 薛永, 等. BHU-2D干涉综合孔径微波辐射计反演算法研究[J] . 微波学报, 2009, 25(2):87-91.
[3] 郎锐, 郭华民, 赵振维. 综合孔径微波辐射计天线与信道模型仿真[J] . 电波科学学报, 2007, 22(5):794-798.
[4] KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission:new tool for monitoring key elements of the global water cycle[J] . Proceedings of the IEEE, 2010, 98(5):666-687.
[5] DONOHO D L. Compressed sensing[J] . IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
[6] CAND`ES E, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J] . IEEE Trans on Infomation Theory, 2006, 52(2):489-509. [7] 何方敏. 综合孔径微波辐射成像统计反演方法研究[D] . 武汉:华中科技大学, 2010.
[8] LIU Yuan-yuan, CHEN Su-hua, ZHU Lu. The imaging approach of sparse interferometry to microwave radiation[C] //Proc of IEEE International Symposium on Antennas and Propagation. 2013:1280-1283.
[9] CHEN Jian-fei, LI Yue-hua, WANG Jian-qiao, et al. A compressive sensing imaging algorithm for millimeter-wave synthetic aperture imaging radiometer in near-field[C] //Proc of IEEE Asia-Pacific Microwave Conference. 2013:972-974.
[10] GAN Lu. Block compressed sensing of natural images[C] //Porc of the 15th International Conference on Digital Signal Processing. [S. l. ] :IEEE Press. 2007:403-406.
[11] 王蓉芳, 焦李成, 刘芳, 等. 利用纹理信息的图像分块自适应压缩感知[J] . 电子学报, 2013, 41(8):1506-1514.
[12] JACKSON J I, MEYER C H, NISHIMURA D G, et al. Selection of a convolution function for Fourier inversion using gridding[J] . IEEE Trans on Medical Imaging, 1991, 10(3):473-478.
[13] FESSLER J A, SUTTON B P. Nonuniform fast Fourier transforms using min-max interpolation[J] . IEEE Trans on Signal Processing, 2003, 51(2):560-574.
[14] LI Cheng-bo. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D] . Hoston:Rice University, 2009.
[15] YANG Jun-feng, YIN Wo-tao, ZANG Yin, et al. A fast algorithm for edge preserving variational multichannel image restoration[J] . SIAM Journal on Imaging Sciences, 2009, 2(2):569-592.
[16] YANG Jun-feng, ZHANG Yin, YIN Wo-tao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J] . IEEE Journal of Seleced Topics in Signal Processing, 2010, 4(2):288-297.
[17] 李树涛, 魏丹. 压缩传感综述[J] . 自动化学报, 2009, 35(11):1369-1377.
收稿日期 2014/3/20
修回日期 2014/5/4
页码 1236-1239,1252
中图分类号 TP391.41
文献标志码 A