《计算机应用研究》|Application Research of Computers

基于二维拓扑结构的图像变形计算方法

Calculation method for image deformation based on 2D topology structures

免费全文下载 (已被下载 次)  
获取PDF全文
作者 林剑楚,肖泉,王守觉
机构 1.中国科学院半导体研究所,北京 100083;2.中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州 215123
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1227-04
DOI 10.3969/j.issn.1001-3695.2015.04.064
摘要 提出了一种新的适用于三角形和四边形拓扑结构的坐标系计算方法。通过利用几何方法寻找到三角形和四边形坐标系在几何空间中相似的一一映射关系。基于直观的几何解释,实现了四边形坐标系的解在BC(barycentric coordinates)中从三维空间降低到二维空间。此外,结合多项式插值和物理模型构造变形空间实现图像的非线性变形。结果表明,该计算方法具有实现图像线性和非线性变形直观、方便的优点,是一种实现图像变形的有效方法。
关键词 拓扑变形;坐标系映射;几何降维;非线性插值
基金项目 国家自然科学基金资助项目(90920013)
本文URL http://www.arocmag.com/article/01-2015-04-064.html
英文标题 Calculation method for image deformation based on 2D topology structures
作者英文名 LIN Jian-chu, XIAO Quan, WANG Shou-jue
机构英文名 1. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2. Laboratory of High Dimensional Biomimetic Informatics & its Applications, Suzhou Institute of Nanotech & Nanobionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
英文摘要 This paper proposed a new image deformation calculative method, which was suited to both triangle and quadrilateral topology structures. The similar mapping principle in the geometric space was found between the triangle coordinates and quadrilateral coordinates by geometric method. Based on the intuitive geometric definition, the mapping reduced the quadrilateral coordinates solutions’ space from 3-dimension in BC to 2-dimension. Besides, the method realized image non-linear deformation by combining the solutions with spline interpolation or physical models to construct the deformation space.Experiments show that this method has the advantages of intuitiveness and convenience when fulfilling the image’s linear and non-linear deformation and is an efficient way for image deformation.
英文关键词 topology deformation; coordinate mapping; dimension geometric reduction; non-linear interpolation
参考文献 查看稿件参考文献
  [1] JU Tao, SCHEEAFER S, WARREN J. Mean value coordinates for closed triangular meshes[J] . ACM Trans on Graphics, 2005, 24(3):561-566.
[2] FLOATER M S. Mean value coordinates[J] . Computer Aided Geometric Design, 2003, 20(1):19-27. [3] LIPMAN Y, KOPF J, COHEN-OR D, et al. GPU-assisted positive mean value coordinates for mesh deformations[C] //Proc of Eurographics Symposium on Geometry Processing. 2007:117-123.
[4] JOSHI P, MEYER M, DEROSE T, et al. Harmonic coordinates for character articulation[J] . ACM Trans on Graphic, 2007, 26(3):71.
[5] LIDBERG P. Barycentric and harmonic coordinates[R] . [S. l. ] :Uppsala University, 2012.
[6] LIPMAN Y, LEVIN D, COHENOR D. Green coordinates[J] . ACM Trans on Graphics, 2008, 27(3):78.
[7] SHENG Bin, MENG Wei-liang, SUN Han-qiu, et al. Sketch-based design for green geometry and image deformation[J] . Multimedia Tools and Applications, 2013, 62(3):581-599.
[8] 王森, 杨克俭, 刘杨军, 等. 计算机二维动画中一种快速动画变形方法的研究[J] . 计算机应用研究, 2009, 26(2):769-771.
[9] HUANG Jin, CHEN Lu, LIU Xin-guo, et al. Efficient mesh deformation using tetrahedron control mesh[J] . Computer Aided Geometric Design, 2009, 26(6):617-626.
[10] 王守觉, 梁先扬. 图像变形计算方法及其应用[J] . 计算机辅助设计与图形学学报, 2011, 23(8):1304-1310.
[11] 张众维, 肖泉, 王守觉. 三角形坐标系下的图像拓扑变形插值算法[J] . 计算机辅助设计与图形学学报, 2013, 25(11):1701-1708.
[12] KAUFMANN P, WANG O, SORKINE-HORNUNG A, et al. Finite element image warping[J] . Euro Graphics, 2013, 32(2):31-39.
[13] HE Kai-ming, CHANG Hui-wen, SUN Jian. Rectangling panorama images via warpping[J] . ACM Trans on Graphics, 2013, 32(4):79.
[14] WOLBERG G, FADAIFARD H. Image warping for retargeting garments among arbitrary poses[J] . Virtual Computer, 2013, 29(6):525-534.
[15] FLOATER M S. One-to-one piecewise linear mappings over triangulations[J] . Mathematics of Computation, 2003, 72(242):685-696.
[16] 王守觉. 多维空间仿生信息学入门[M] . 北京:国防工业出版社, 2008.
[17] ALEXA M. Differential coordinates for local mesh morphing and deformation[J] . The Visual Computer, 2003, 19(2):105-114.
收稿日期 2014/3/3
修回日期 2014/4/26
页码 1227-1230
中图分类号 TP391.9
文献标志码 A