《计算机应用研究》|Application Research of Computers

软件可靠性评测的多因素决策模型

Multi-factor decision making for software reliability evaluation

免费全文下载 (已被下载 次)  
获取PDF全文
作者 杨玥
机构 中国电子科技集团公司第二十研究所,西安 710068
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1110-04
DOI 10.3969/j.issn.1001-3695.2015.04.036
摘要 提出了一种利用软件生命周期过程中影响软件可靠性的软件质量特性进行软件可靠性评测的方法。从软件失效的机理出发,分析并提取了刻画软件可靠性各个方面的因素,同时借助模糊分析及专家系统的理论对软件可靠性因素进行了定量的划分和描述。针对软件可靠性评测的多因素决策问题,提出了一种基于随机森林的软件可靠性评测模型。通过蒙特卡罗模拟仿真建立了各个可靠性因素的概率模型以获得评测样本数据集,并在此数据集上对所提出的评测模型进行了评测和分析。实验结果表明,所提出的方法能够对软件可靠性进行准确的评测,且不依赖于特定的可靠性因素的先验概率,显著提高了软件可靠性的评测性能。同时验证了该方法能够克服小样本集上易出现的过拟合及表现力差的问题,具有较好的稳定性和鲁棒性。
关键词 软件可靠性;软件质量;随机森林;蒙特卡罗;专家系统
基金项目 国家自然科学基金资助项目(61403301)
中国博士后科学基金资助项目(2014M560783)
苏州市科技计划资助项目(SYG201444)
本文URL http://www.arocmag.com/article/01-2015-04-036.html
英文标题 Multi-factor decision making for software reliability evaluation
作者英文名 YANG Yue
机构英文名 No. 20 Research Institute, China Electronics Technology Group Corporation, Xi'an 710068, China
英文摘要 This paper described an accurate and efficient software reliability evaluation approach by using software quality features that affected the software reliability in the whole process of software development lifecycle. It extracted reliability factors to characterize the software reliability from the perspective of software failure, and employed fuzzy analysis and expert system to quantificationally depict those factors. Then to address the problem of multifactor decision of software reliability, it established a novel software reliability evaluation model based on random forest. Monte Carlo simulation was utilized to acquire the distribution of each reliability factor and then further to generate simulation data samples for evaluation. Extensive experimental results on these data samples show that the proposed approach can make accurate predictions and estimations, and substantially improve the evaluation accuracy compared with traditional approaches. Additional experiments verify the effectiveness of this approach at different training sample sizes, showing its stability and robustness on smaller training data set.
英文关键词 software reliability; software quality; random forest; Monte Carlo; expert system
参考文献 查看稿件参考文献
  [1] LYU M R. Software reliability engineering:a roadmap[C] //Proc of Future of Software Engineering. [S. l. ] :IEEE Computer Society, 2007:153-170.
[2] YANG Bo, LI Xiang, XIE Min, et al. A generic data-driven software reliability model with model mining technique[J] . Reliability Engineering and System Safety, 2010, 95(6):671-678.
[3] MORASCA S. Fundamental aspects of software measurement[C] //Lecture Notes in Computer Science. 2013:1-45.
[4] LUO Zi-qiang, CAO Peng, TANG Guo-chun, et al. A modification to the Jelinski-Moranda software reliability growth model based on cloud model theory[C] //Proc of the 7th International Conference on Computational Intelligence and Security. 2011:195-198.
[5] DOGUC O, RAMIREZ-MARQUEZ J E. A generic method for estimating system reliability using Bayesian networks[J] . Reliability Engineering and System Safety, 2009, 94(2):542-550.
[6] PHAM H, ZHANG Xue-mei. NHPP software reliability and cost mo-dels with testing coverage[J] . European Journal of Operational Research, 2003, 145(2):443-454.
[7] RAJA U, HALE D P, HALE J E. Modeling software evolution defects:a time series approach[J] . Journal of Software Maintenance, 2009, 21(1):49-71.
[8] LO J H. A study of applying ARIMA and SVM model to software re-liability prediction[C] //Proc of International Conference on Uncertainty Reasoning and Knowledge Engineering. 2011:141-144.
[9] SU Yu-sheng, HUANG Chin-yu. Neural-network-based approaches for software reliability estimation using dynamic weighted combinatio-nal models[J] . Journal of Systems and Software, 2007, 80(4):606-615.
[10] MOURA M C, ZIO E, LINS I D, et al. Failure and reliability prediction by support vector machines regression of time series data[J] . Reliability Engineering and System Safety, 2011, 96(11):1527-1534.
[11] 李海峰, 陆民燕, 王智新. 基于灰色系统理论的软件可靠性综合评价框架[J] . 北京航空航天大学学报, 2008, 34(11):1261-1265.
[12] IEEE STD 1633-2008, IEEE recommended practice on software reliability[S] . 2008.
[13] PAI G. A survey of software reliability models[EB/OL] . (2002-12-06). http://arXiv. org/ftp/arxiv/papers/1304/1304. 4539. pdf.
[14] RAINER A, HALL T. A quantitative and qualitative analysis of factors affecting software processes[J] . Journal of Systems and Software, 2003, 66(1):7-21.
[15] DAI Yuan-shun, XIE Min, POH K L. Modeling and analysis of correlated software failures of multiple types[J] . IEEE Trans on Reliability, 2005, 54(1):100-106.
[16] TU Hong-fei, SUN Wei, ZHANG Ya-nan. The research on software metrics and software complexity metrics[C] //Proc of International Forum on Computer Science-Technology and Applications. 2009:131-136.
[17] BREIMAN L. Random forests[J] . Machine Learning, 2001, 45(1):5-32.
收稿日期 2014/3/26
修回日期 2014/5/16
页码 1110-1113
中图分类号 TP311.52
文献标志码 A