《计算机应用研究》|Application Research of Computers

基于信息熵加权的协同聚类改进算法

Improved collaborative clustering algorithm based on entropy weight

免费全文下载 (已被下载 次)  
获取PDF全文
作者 高翠芳,黄珊维,沈莞蔷,殷萍
机构 江南大学 理学院,江苏 无锡 214122
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1016-03
DOI 10.3969/j.issn.1001-3695.2015.04.013
摘要 为了改进协同聚类中计算量较大的问题,提出一种信息熵加权的模糊协同聚类算法。首先引入信息熵来衡量隶属度差异矩阵中包含的不确定性信息,然后根据有效信息量定义相似性距离中的权重,最后通过权重对聚类的贡献实现子集之间的协同聚类。实验结果显示,新算法能充分利用数据子集中蕴涵的相关信息,以较高的计算效率实现更准确的协同聚类。与已有算法相比,新算法能自适应地计算协同关系强度,简化了参数设置和协同函数的复杂计算。
关键词 模糊聚类;协同关系;差异矩阵;信息熵;权重系数
基金项目 国家自然科学基金青年基金资助项目(61402202)
高等学校博士学科点专项科研基金资助项目(20120093120016)
江苏省自然科学青年基金资助项目(BK20130117)
本文URL http://www.arocmag.com/article/01-2015-04-013.html
英文标题 Improved collaborative clustering algorithm based on entropy weight
作者英文名 GAO Cui-fang, HUANG Shan-wei, SHEN Wan-qiang, YIN Ping
机构英文名 School of Science, Jiangnan University, Wuxi Jiangsu 214122, China
英文摘要 In order to overcome the disadvantage of large amount of calculation in collaborative clustering, this paper proposed an entropy-weighted fuzzy collaborative clustering algorithm. First, it introduced the entropy to measure the uncertain information in the difference matrices of membership degree. Second, it defined the entropy-weighted distance for similarity according to the available information. Last, it offered and implemented the collaborative clustering by means of the contribution of the weighted index. The experimental results show that the improved algorithm can take full advantage of the relevant information among the subsets and achieve more accurate collaborative results with high computational efficiency. Compared with the exis-ting clustering, the improved algorithm can automatically calculate the collaborative relationship strength, so it can simplify the assignment of parameters and the calculation of collaborative function.
英文关键词 fuzzy clustering; collaborative relationship; difference matrix; information entropy; weight coefficient
参考文献 查看稿件参考文献
  [1] ZADEH L A. Fuzzzy sets[J] . Information and Control, 1965, 8(3):338-353.
[2] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M] . New York:Plenum Press, 1981.
[3] GONG Mao-guo, LIANG Yan, SHI Jiao, et al. Fuzzy C-means clustering with local information and kernel metric for image segmentation[J] . IEEE Trans on Image Processing, 2013, 22(2):573-584.
[4] 崔兆华, 高立群, 马红宾, 等. 融合万有引力和局部熵的FCM算法[J] . 计算机应用研究, 2013, 30(12):3828-3830.
[5] 高翠芳. 模糊聚类新算法及应用研究[D] . 无锡:江南大学, 2011.
[6] 陈加顺, 皮德常. 改进的基于二次型模糊C均值聚类模型[J] . 系统工程与电子技术, 2013, 35(7):1547-1553.
[7] PEDRYCZ W, RAI P. Collaborative fuzzy clustering with the use of fuzzy C-means and its quantification[J] . Fuzzy Sets and Systems, 2008, 159(18):2399-2427.
[8] COLETTA S, VENDRAMIN L, HRUSCHKA E R, et al. Collaborative fuzzy clustering algorithms:some refinements and design guidelines[J] . IEEE Trans on Fuzzy Systems, 2012, 20(3):444-462.
[9] GAO Cui-fang, WU Xiao-jun, YU P. An algorithm of fuzzy collaborative clustering based on kernel competitive agglomeration[J] . Journal of Computers, 2013, 8(10):2623-2631.
[10] COLETTA L F S, VENDRAMIN L, HRUSCHKA E R, et al. Collaborative fuzzy clustering algorithms:some refinements and design guidelines[J] . IEEE Trans on Fuzzy Systems, 2012, 20(3):444 - 462.
[11] 钟文琪, 章名耀. 喷动流化床流动结构的SHANNON信息熵模糊聚类分析[J] . 中国电机工程学报, 2005, 4(7):13-17.
[12] 刘旭波, 司锡才. 基于改进的模糊聚类的雷达信号分选[J] . 弹箭与制导学报, 2009, 29(5):278-282.
[13] 孙浩军, 高玉龙, 闪光辉, 等. 基于熵权法的混合属性聚类算法[J] . 汕头大学学报:自然科学版, 2013, 28(4):58-65.
[14] YU Fu-sheng, TANG Juan, CAI Rui-qiong. A necessary preprocessing in horizontal collaborative fuzzy clustering[C] //Proc of IEEE International Conference on Granular Computing. Washington DC:IEEE Computer Society, 2007:399-403.
收稿日期 2014/3/29
修回日期 2014/5/26
页码 1016-1018,1023
中图分类号 TP391.3
文献标志码 A