《计算机应用研究》|Application Research of Computers

一种结合次梯度的粒子群全局优化算法

Subgradient integrated into particle swarm optimizer for global optimization

免费全文下载 (已被下载 次)  
获取PDF全文
作者 许志良,曾德炉,张运生
机构 1.深圳市可视媒体处理与传输重点实验室,广东 深圳 518172 ;2.深圳信息职业技术学院 软件学院,广东 深圳 518172;3.厦门大学 信息科学与技术学院,福建 厦门 361005
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)04-1007-04
DOI 10.3969/j.issn.1001-3695.2015.04.011
摘要 为优化不可微且非凸的连续目标函数,提出了结合次梯度的粒子群全局优化算法(SGPSO)。在优化算法中,首次提出利用次梯度方向来更新粒子群算法中粒子的搜索速度方案。加上与粒子相互间的通信机制配合,改进方案提高了寻得全局最优的机率。进一步地,在次梯度迭代过程中,提出其中的步长函数需要满足关于次梯度幅值是低阶无穷小且关于迭代时刻是递减的充分条件保证序列稳定收敛。最后,针对标准库给出了SGPSO的实验和比较以验证其有效性,结果表明提出的算法能很好地实现目标函数的全局优化,且收敛效果更好。
关键词 全局优化;粒子群优化;次梯度;步长函数
基金项目 国家自然科学基金资助项目(61103121)
广东省自然科学基金资助项目(S2012010008881,S2013010016601)
本文URL http://www.arocmag.com/article/01-2015-04-011.html
英文标题 Subgradient integrated into particle swarm optimizer for global optimization
作者英文名 XU Zhi-liang, ZENG De-lu, ZHANG Yun-sheng
机构英文名 1. Shenzhen Key Laboratory of Visual Media Processing & Transmission, Shenzhen Guangdong 518172, China; 2. School of Software, Shenzhen Institue of Information Technology, Shenzhen Guangdong 518172, China; 3. School of Information Science & Technology, Xiamen University, Xiamen Fujian 361005, China
英文摘要 This paper proposed an approach of subgradient integrated into particle swarm optimizer (SGPSO) for globally optimizing continuous objective function. In minimization, it proposed a revision for the manner of velocity update with the direction of subgradient to search for the local minima of a given non-differentiable and non-convex objective function. Thus, it combined with communications among particles, this revision would offer more chances to obtain the global minima. Furthermore, in the part of subgradient iteration, it suggested that the step function should be a lower order infinitesimal with respect to subgradient magnitude as well as be a decreasing function with respect to iteration time. In the end, experiments and comparisons of the proposed SGPSO on benchmark problems validate its performance with better effectiveness and efficiency.
英文关键词 global optimization; particle swarm optimizer(PSO); subgradient; step function
参考文献 查看稿件参考文献
  [1] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C] // Proc of the 6th Symposium on MicroMachine and Human Science. 1995:39-43.
[2] EBERHART R C, SIMPSON P, DOBBINS R. Computational intelligence PC tools[M] . Boston:Academic Press, 1996:212-226.
[3] SHI Yu-hui, EBERHART R C. A modified particle swarm optimizer[C] //Proc of IEEE International Conference on Evolutionary Computation. 1998:69-73.
[4] SHI Yu-hui, EBERHART R C. Particle swarm optimization with fuzzy adaptive inertia weight[C] // Proc of Workshop on Particle Swarm Optimization. 2001:101-106.
[5] KENNEDY J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[C] //Proc of IEEE Congress on Evolutionary Computation. 1999:1931-1938.
[6] CLERC M , KENNEDY J. The particle swarm:explosion, stability, and convergence in a multi-dimensional complex space[J] . IEEE Trans on Evolutionary Computation, 2002, 6(1):58-73.
[7] FAN H Y, SHI Yu-hui. Study on Vmax of particle swarm optimization[C] // Proc of Workshop on Particle Swarm Optimization. 2001.
[8] Van Den BERGH F, ENGELBRECHT A P. Cooperative learning in neural networks using particle swarm optimizers[J] . South African Computer Journal, 2000, 26(11):84-90.
[9] MESSERSCHMIDT L, ENGELBRECHT A P. Learning to play games using a PSO-based competitive learning approach[J] . IEEE Trans on Evolutionary Computation, 2004, 8(3):280-288.
[10] LI Xiao-dong, YAO Xin. Cooperatively coevolving particle swarms for large scale optimization[J] . IEEE Trans on Evolutionary Computation, 2012, 16(2):210-224.
[11] GAING Z L, LIN C H, TSAI M H, et al. Rigorous design and optimization of brushless PM motor using response surface methodology with quantum-behaved PSO operator[J] . IEEE Trans on Magne-tics, 2014, 50(1):1-4.
[12] KITAK P, GLOTIC A, TICAR I. Heat transfer coefficients determination of numerical model by using particle swarm optimization[J] . IEEE Trans on Magnetics, 2014, 50(2):933-936.
[13] CHEN S M, MANALU G M T, PAN J S, et al. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques[J] . IEEE Trans on Cybernetics, 2013, 43(3):1102-1117.
[14] LIU Bao-ling, HOU Di-bo, HUANG Ping-jie, et al. An improved PSO-SVM model for online recognition defects in eddy current testing[J] . Nondestructive Testing and Evaluation, 2013, 28(4):367-385.
[15] KECSKES I, SZEKACS L, FODOR J C, et al. PSO and GA optimization methods comparison on simulation model of a real hexapod robot[C] //Proc of the 9th IEEE International Conference on Computational Cybernetics. [S. l. ] :IEEE Press, 2013:125-130.
[16] SUGANTHAN P N. Particle swarm optimizer with neighborhood ope-rator[C] //Proc of Congress on Evolutionary Computation. Washington DC:IEEE Press, 1999:1958-1962.
[17] ROBINSON J, RAHMAT-SAMII Y. Particle swarm optimization in electromagnetics[J] . IEEE Trans on Antennas and Propagation, 2004, 52(2):397-407.
[18] ANGELINE P J. Using selection to improve particle swarm optimization[C] //Proc of IEEE International Conference on Evolutionary Computation. 1998:84-89.
[19] BLACKWELL T M, BENTLEY P J. Don’t push me! Collision-avoiding swarms[C] //Proc of IEEE Congress on Evolutionary Computation. 2002:1691-1696.
[20] Van Den BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J] . IEEE Trans on Evolutionary Computation, 2004, 8(3):225-239.
[21] LIANG Jing, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J] . IEEE Trans on Evolutionary Computation, 2006, 10(3):281-295.
[22] LUO Gui-lan, ZHAO Hai , SONG Chun-he. Convergence analysis of a dynamic discrete PSO algorithm[C] //Proc of International Conference on Intelligent Networks and Intelligent Systems. [S. l. ] :IEEE Computer Society, 2008:89-92.
[23] FERNANDEZ-MARTINEZ J L, GARCIA-GONZALO E. Stochastic stability analysis of the linear continuous and discrete PSO models[J] . IEEE Trans on Evolutionary Computation, 2011, 15(3):405-423.
[24] CHEN S, MONTGOMERY J. Selection strategies for initial positions and initial velocities in multi-optima particle swarms[C] //Proc of Genetic and Evolutionary Computation Conference. [S. l. ] :ACM Press, 2011:53-60.
[25] SHOR N Z. Minimization methods for non-differentiable functions[M] . Berlin:Springer, 1985.
[26] HIRIART-URRUTY J B, LEMARECHAL C. Convex analysis and minimization algorithms I[M] . Berlin:Springer-Verlag, 1996.
收稿日期 2014/3/21
修回日期 2014/5/13
页码 1007-1010
中图分类号 TP301.6
文献标志码 A