《计算机应用研究》|Application Research of Computers

基于高性能计算的SWAT参数敏感度分析并行框架

Parallel framework for SWAT sensitivity analysis based on high performance computing

免费全文下载 (已被下载 次)  
获取PDF全文
作者 李强,陆忠华,王彦棡,陈曦,罗毅
机构 1.中国科学院 计算机网络信息中心,北京 100190;2.中国科学院 新疆生态与地理研究所,乌鲁木齐 830011;3.中国科学院大学,北京 100049
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2015)01-0041-04
DOI 10.3969/j.issn.1001-3695.2015.01.009
摘要 随着大规模水文模拟需求的不断提高,如何解决计算需求问题逐渐成为水文研究的一个热点。SWAT(soil and water assessment tool)模型在进行大规模水文模拟时有着良好的适应性与准确度,但其敏感度分析模块由于计算量过高,计算时长往往长达数月之久。为了加快SWAT敏感度分析的运行速度,针对SWAT敏感度分析模块的特点,基于MPI提出了一种高效的主—从式并行计算框架,并在此框架的基础上,通过将正演过程并行化,在敏感度分析的主—从并行框架中引入通信子空间的操作,将并行化的正演与主—从式的外层并行框架相结合,得到一种混合式的敏感度分析并行框架,大大提高了对参数集合的敏感度分析速度,将SWAT敏感度分析模块使用的处理器数量从原始的单核串行一跃提升到百核的数量级。最后通过天山北坡流域的模拟验证了此并行框架的可行性。
关键词 SWAT;LH-OAT算法;参数敏感性分析;并行计算;通信子空间;主—从并行框架
基金项目 国家“973”计划资助项目(2010CB951002)
中国科学院重点部署项目(KZZD-EW-12)
本文URL http://www.arocmag.com/article/01-2015-01-009.html
英文标题 Parallel framework for SWAT sensitivity analysis based on high performance computing
作者英文名 LI Qiang, LU Zhong-hua, WANG Yan-gang, CHEN Xi, LUO Yi
机构英文名 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; 2. Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
英文摘要 With the development of large scale hydrologic modelling, how to resolve the computing capability problem becomes a hot research topic. SWAT(soil and water assessment tool) model demonstrates good adaptation and precision in hydrologic modelling. But because of its large computation in sensitivity analysis module, the total time of computation usually lasts for months. To accelerate the efficiency of SWAT sensitivity analysis, according to the characteristics of sensitivity analysis module of SWAT, this paper proposed a high performance master-slave parallel computing framework.Then based on this framework, by parallelizing the forward model, it applied communicator management into SWAT, which largely accelerated the sensitivity analysis of input parameters.It increased the number of processor used by SWAT sensitivity analysis from only one to hundreds. At last, by the hydrologic simulation of basins in the north of Tian Moutain, the resultvalidates the feasibility of the parallel framework.
英文关键词 SWAT; LH-OAT algorithm; sensitivity analysis; parallel computing; communicator; master-slave parallel framework
参考文献 查看稿件参考文献
  [1] ARNOLD J G, SRINIVASAN R, MUTTIAH R S. Large area hydrologic modeling and assessment part I:model development[J] . Journal of the American Water Resources Association, 1998, 34(1):73-89. [2] DUAN Qing-yun, SOROOSHIAN S, GUPTA V. Effective and efficient global optimization for conceptual rainfall-runoff models[J] . Water Resources Research, 1992, 28(4):1015-1031.
[3] YALEW S G, Van GRIENSVEN A, KOKOSZKIEWICZ L. Parallel computing of a large scale spatially distributed model using the soil and water assessment tool[C] // Proc of the 5th International Congress on Environmental Modelling and Software, Modelling for Environment’s Sake. 2010.
[4] ILYA M D, MACLEA N, JONATHAN J. A high-resolution model of soil and surface water conditions[J] . Ecological Modelling, 2012, 23(7):109-119.
[5] MCKAY M D, BECKMAN R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J] . Technometrics, 1979, 21(2):239-245.
[6] HOLVOET K, Van GRIENSVEN A, SEUNTJENS P, et al. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT[J] . Physics and Chemistry of the Earth, 2005, 30(8-10):518-526.
[7] WHITE K L, CHAUBEY I. Sensitivity analysis, calibration, and validations for a multisite and multivariable swat model1[J] . Journal of the American Water Resources Association, 2005, 41(5):1077-1089.
[8] LENHART T, ECKHARDT K, FOHRER N. Comparison of two different approaches of sensitivity analysis[J] . Physics and Chemistry of the Earth, 2002, 27(9):645-654.
[9] Van GRIENSVEN A, MEIXNER T, GRUNWALD S. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J] . Journal of Hydrology, 2006, 324(1):10-23.
[10] LUO Yu-zhou, ZHANG Ming-hua. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT[J] . Environmental Pollution, 2009, 157(12):3370-3378.
[11] GROPP W, LUSK E, SKJELLUM A. Using MPI:potable parallel programming with the message-passing interface[M] . Cambridge:MIT Press, 1994.
收稿日期 2013/12/18
修回日期 2014/2/7
页码 41-44,70
中图分类号 TP301.5
文献标志码 A